The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation
Eukaryotic cells contain a large number of small nucleolar RNAs (snoRNAs). A major family of snoRNAs features a consensus ACA motif positioned 3 nucleotides from the 3' end of the RNA. In this study we have characterized nine novel human ACA snoRNAs (U64-U72). Structural probing of U64 RNA foll...
Gespeichert in:
Veröffentlicht in: | Genes & development 1997-04, Vol.11 (7), p.941-956 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eukaryotic cells contain a large number of small nucleolar RNAs (snoRNAs). A major family of snoRNAs features a consensus ACA motif positioned 3 nucleotides from the 3' end of the RNA. In this study we have characterized nine novel human ACA snoRNAs (U64-U72). Structural probing of U64 RNA followed by systematic computer modeling of all known box ACA snoRNAs revealed that this class of snoRNAs is defined by a phylogenetically conserved secondary structure. The ACA snoRNAs fold into two hairpin structures connected by a single-stranded hinge region and followed by a short 3' tail. The hinge region carries an evolutionarily conserved sequence motif, called box H (consensus, AnAnnA). The H box, probably in concert with the flanking helix structures and the ACA box characterized previously, plays an essential role in the accumulation of human U64 intronic snoRNA. The correct processing of a yeast ACA snoRNA, snR36, in mammalian cells demonstrated that the cis- and trans-acting elements required for processing and accumulation of ACA snoRNAs are evolutionarily conserved. The notion that ACA snoRNAs share a common secondary structure and conserved box elements that likely function as binding sites for common proteins (e.g., GAR1) suggests that these RNAs possess closely related nucleolar functions. |
---|---|
ISSN: | 0890-9369 1549-5477 |
DOI: | 10.1101/gad.11.7.941 |