A modular six-directional force sensor for prosthetic assessment : A technical note

A device designed to measure the forces and moments transmitted through prostheses of persons with lower limb amputation is presented. The sensing unit design is an advancement over previous prosthesis force measurement devices in that it is very thin (19 mm) and lightweight (527.5 g, including sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of rehabilitation research and development 1997-04, Vol.34 (2), p.195-202
Hauptverfasser: SANDERS, J. E, MILLER, R. A, BERGLUND, D. N, ZACHARIAH, S. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A device designed to measure the forces and moments transmitted through prostheses of persons with lower limb amputation is presented. The sensing unit design is an advancement over previous prosthesis force measurement devices in that it is very thin (19 mm) and lightweight (527.5 g, including signal-conditioning instrumentation). The disk-shaped transducer fits between the socket and socket adapter of a standard modular prosthesis, measuring all six force and moment components at this location. Twelve strain gages were used, configured into six two-arm active Wheatstone bridge circuits. A 6X6 matrix was constructed from calibration data to relate the 6-component bridge-output vector to a 6-component force and moment vector. In a bench-test setting, the sensor was evaluated under typical load combinations encountered during the walking of a person with transtibial amputation (TTA) and shown to have errors less than 7.2% of the full-scale output for each direction. Data collected on a subject with TTA walking at different speeds are presented.
ISSN:0748-7711
1938-1352