Effects of Food Texture and Sample Thickness on Mandibular Movement and Hardness Assessment during Biting in Man

This study was designed to investigate the relationship among jaw movements, physical characteristics of food, and sensory perception of hardness in man. Vertical movements of the mandible were recorded with an infrared tracking device in humans during biting on two test foods, carrot and cheese. Sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dental research 1997-03, Vol.76 (3), p.789-795
Hauptverfasser: Peyron, M.A., Maskawi, K., Woda, A., Tanguay, R., Lund, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study was designed to investigate the relationship among jaw movements, physical characteristics of food, and sensory perception of hardness in man. Vertical movements of the mandible were recorded with an infrared tracking device in humans during biting on two test foods, carrot and cheese. Samples of standard length (2 cm) and width (2 cm) were prepared in three different thicknesses (0.5, 1.0, and 1.5 cm). Nine subjects were asked to perform two types of bite with their incisor teeth. In the first, they cut through the food, then stopped and spat out the pieces (bite alone); in the second, biting was followed by mastication and swallowing (bite+chew). The 12 conditions (thickness x3, food x2, and bite x2) were presented in a random order within each block, and blocks were repeated five times (60 trials per subject). Subjects also estimated the hardness of the samples twice for each condition on visual analogue scales (VAS) 100 mm long. The duration, vertical amplitude, and maximum vertical velocity of the mandible during biting were calculated by computer for the three phases of the movements (opening, and fast and slow closing). Multilevel statistical models were used for data analysis. The estimated hardness scores associated with the first bite of thin carrot (59.0 VAS units) was significantly greater than for cheese (16.8 VAS units). The type of bite had no significant effect on these scores, but the estimate of hardness was significantly greater for the thickest sample (+13.3 VAS units). Food type had its strongest effect on the slow-closing phase. In particular, the peak velocity that followed the fracturing of the food sample was much greater for carrot than for cheese (thin, 34.1 mm.s-1 vs. 26.6 mm.s-1), and the difference between foods increased with thickness. The amplitude of opening was significantly greater for the thickest sample than for the other two. There were no significant relationships between VAS scores and the movement parameters. These results suggest that, when humans bite food: (1) changing the thickness of food has a greater effect on movement parameters than changing from soft to hard food, (2) the parameters of biting change little if biting is followed by mastication, (3) hardness perception is dependent on the thickness of food, (4) hardness perception is not different when food is removed from the mouth than when it is chewed and swallowed, and (5) there is no relationship between any of the parameters of movement th
ISSN:0022-0345
1544-0591
DOI:10.1177/00220345970760031201