A micellar model for investigating the chemical nature of hydrogen transfer in NAD(P)H-dependent enzymatic reactions

Aqueous micelles of Triton X-100 were shown to catalyse the redox reaction between NADH and 2-p-iodophenyl-3-p-nitrophenyl-5-phenyltetrazolium chloride (INT) at the neutral pH. The transfer of reducing equivalents between the reactants in the micellar system appeared to be direct and quantitative. N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 1989-03, Vol.159 (3), p.1330-1336
1. Verfasser: Rao, U.Mallikarjuna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aqueous micelles of Triton X-100 were shown to catalyse the redox reaction between NADH and 2-p-iodophenyl-3-p-nitrophenyl-5-phenyltetrazolium chloride (INT) at the neutral pH. The transfer of reducing equivalents between the reactants in the micellar system appeared to be direct and quantitative. N-tert-butylphenyl-α-nitrone, a lipophilic free-radical scavenger which can enter micelles, and superoxide dismutase did not alter the stoichiometry of the reaction. The oxidation product of NADH was found to be 100% enzymatically active. The IR spectrum of INT-formazan (i.e., the product of INT reduction) showed an absorbance at 3,100–3,700 cm − due to NH-stretching. The presence of NH proton, confirmed further by IH-NMR, together with the above observations suggests that INT, as part of the over-all redox process, abstracts a C(4) hydrogen of the dihydropyridine nucleus of NADH with a simultaneous cleavage at N(2–3) position of its 1,2,3,4-tetrazole ring system and that the redox events are confined to a microenvironment as in the case of NAD(P)H-dependent enzymatic reactions.
ISSN:0006-291X
1090-2104
DOI:10.1016/0006-291X(89)92256-0