Multiple components of synaptosomal [3H]-.gamma.-aminobutyric acid release resolved by a rapid superfusion system
Release of [3H]-gamma-aminobutyric acid ([3H]GABA) from rat brain synaptosomes was studied with 60-ms time resolution, using a novel rapid superfusion method. Synaptosomes were prelabeled with [3H]GABA via an associated GABA uptake system. KCl depolarization stimulated at least three distinct compon...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1989-01, Vol.28 (2), p.586-593 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Release of [3H]-gamma-aminobutyric acid ([3H]GABA) from rat brain synaptosomes was studied with 60-ms time resolution, using a novel rapid superfusion method. Synaptosomes were prelabeled with [3H]GABA via an associated GABA uptake system. KCl depolarization stimulated at least three distinct components of GABA release: (1) a phasic Ca-dependent component, which develops rapidly and decays with a time constant of at most 60 ms; (2) a tonic Ca-dependent component that persists after KCl depolarization is ended; (3) a Ca-independent component. The three components of GABA release are pharmacologically distinct. The phasic component was selectively blocked by 50 microM Cd2+, while the tonic component was selectively blocked by 100 microM Ni2+. The Ca-independent component was selectively blocked by nipecotic acid (IC50 = 21 microM), a known inhibitor of Na+-dependent GABA uptake. The time course and amplitude of Ca-dependent GABA release evoked by the Ca2+ ionophore A23187 were nearly identical with Ca-dependent release evoked by depolarization. This result indicates that Ca-dependent GABA release depends primarily on Ca2+ entry into the nerve terminal, and not depolarization, per se. The properties of the phasic component suggest that it is normally initiated by a voltage-sensitive Ca2+ channel that is functionally and pharmacologically distinct from those previously described. The Ca-independent component of GABA release is probably mediated by reversal of the Na-dependent, electrogenic GABA uptake system. The ability to identify multiple components of GABA release on a physiologically relevant time scale may afford a more precise definition of the mechanism of action of drugs thought to affect neurotransmission in the brain. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00428a026 |