The role of trehalose in the physiology of nematodes
The sugar trehalose, and α-1-linked non-reducing disaccharide of glucose, is important in the physiology of many micro-organisms as well as in some groups of metazoan organisms, including insects and nematodes. Trehalose is a stress protectant in biological systems as it interacts with and directly...
Gespeichert in:
Veröffentlicht in: | International journal for parasitology 1997-02, Vol.27 (2), p.215-229 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The sugar trehalose, and α-1-linked non-reducing disaccharide of glucose, is important in the physiology of many micro-organisms as well as in some groups of metazoan organisms, including insects and nematodes. Trehalose is a stress protectant in biological systems as it interacts with and directly protects lipid membranes and proteins from the damage caused by environmental stresses such as desiccation and freezing. Trehalose is present in many nematode species where its concentration often exceeds that of glucose but is usually lower than that of glycogen. In
Ascaris suum it is found in all tissues, with highest concentrations in muscle, haemolymph and the female and male reproductive organs. Trehalose acts as an energy reserve in some nematodes and their eggs, and may be important in uptake of glucose; it appears to function as the major circulating blood sugar. Trehalose accumulates in nematodes that can withstand dehydration and may be important in supercooling of nematodes or eggs that can withstand freezing. In many nematodes trehalose is also important in the process of egg hatching. The combined action of 2 enzymes, trehalose 6-phosphate (T6P) synthase and T6P phosphatase, catalyses the synthesis of trehalose in most organisms. Hydrolysis of trehalose to glucose is catalysed by trehalase. These enzymes have been detected in nematodes but the processes regulating their activity are unknown. Trehalose metabolism may provide new molecular targets for attack in nematodes parasitic in mammals. |
---|---|
ISSN: | 0020-7519 1879-0135 |
DOI: | 10.1016/S0020-7519(96)00151-8 |