Histochemical characterization of neuronal NADPH-diaphorase
We examined the properties of neuronal NADPH-diaphorase in sections of rat striatum, using histochemical procedures. NADPH-diaphorase histochemistry stained discrete populations of central neurons and provided a Golgi-like image of the neurons exhibiting this activity. The NADPH-diaphorase reaction...
Gespeichert in:
Veröffentlicht in: | The journal of histochemistry and cytochemistry 1989-05, Vol.37 (5), p.653-661 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examined the properties of neuronal NADPH-diaphorase in sections of rat striatum, using histochemical procedures. NADPH-diaphorase histochemistry stained discrete populations of central neurons and provided a Golgi-like image of the neurons exhibiting this activity. The NADPH-diaphorase reaction appeared to be enzyme catalyzed, since it was abolished by pre-treatment with proteases, heat, and acid or alkaline denaturation. Under anaerobic conditions, any tetrazolium salt with a redox potential more positive than NADPH could be reduced by the enzyme. NADPH-diaphorase activity was sensitive to inhibition by sulfhydryl reagents but was unaffected by metal chelators, superoxide dismutase, and catalase. Therefore, the enzyme is unlikely to be a metalloenzyme or to reduce tetrazoliums by producing superoxide anions or hydrogen peroxide. Various analogues of beta-NADPH could be used by the enzyme; however, beta-NADH, which can be used by DT-diaphorase, was ineffective. The enzyme was also resistant to dicumarol, an inhibitor of DT-diaphorase activity. Electron microscopy indicated that the NADPH-diaphorase reaction resulted in staining of various membranous organelles. We conclude that neuronal NADPH-diaphorase is a membrane-bound enzyme distinct from DT-diaphorase and other known enzymes with diaphorase activity. The histochemical characteristics presented here should now enable meaningful biochemical studies of neuronal NADPH-diaphorase to be undertaken. |
---|---|
ISSN: | 0022-1554 1551-5044 |
DOI: | 10.1177/37.5.2703701 |