Nitric oxide inhibits electrically active units in the rat pineal gland

Extracellular multiple unit recordings were performed in isolated rat pineal glands to determine a possible effect of nitric oxide (NO) on the spontaneous electrical activity of pinealocytes. Spontaneously active cells forming clusters of 3-5 cells fell into two categories: more or less regularly fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Neural Transmission 1997, Vol.104 (1), p.53-58
Hauptverfasser: SCHENDA, J, VOLLRATH, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extracellular multiple unit recordings were performed in isolated rat pineal glands to determine a possible effect of nitric oxide (NO) on the spontaneous electrical activity of pinealocytes. Spontaneously active cells forming clusters of 3-5 cells fell into two categories: more or less regularly firing clusters (REG, 64%) and irregularly discharging clusters with periodically repeated bursts (RHY, 36%). The NO-donor sodium nitroprusside (SNP) reduced the discharge rate of the great majority of REG clusters and of all the RHY clusters examined. Moreover, the burst activity of RHY clusters was abolished. These results could be completely reproduced by using another NO-donor, S-nitroso-N-acetyl-penicillamine (SNAP). The NO synthase inhibitor NMLA had no effect on REG and RHY clusters. The results show that spontaneous electrical activity is an intrinsic function of the rat pineal gland. NO can modulate the electrical activity affecting discharge rate and discharge pattern.
ISSN:0300-9564
1435-1463
DOI:10.1007/BF01271293