Scanning and Escape during Protein-disulfide Isomerase-assisted Protein Folding

During oxidative protein folding, efficient catalysis of disulfide rearrangements by protein-disulfide isomerase is found to involve an escape mechanism that prevents the enzyme from becoming trapped in covalent complexes with substrates that fail to rearrange in a timely fashion. Protein-disulfide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1997-04, Vol.272 (14), p.8845-8848
Hauptverfasser: Walker, K W, Gilbert, H F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During oxidative protein folding, efficient catalysis of disulfide rearrangements by protein-disulfide isomerase is found to involve an escape mechanism that prevents the enzyme from becoming trapped in covalent complexes with substrates that fail to rearrange in a timely fashion. Protein-disulfide isomerase mutants with only a single active-site cysteine catalyze slow disulfide rearrangements and become trapped in a covalent complex with substrate. Escape is mediated by the second, more carboxyl-terminal cysteine at the active site. A glutathione redox buffer increases the k cat for single-cysteine mutants by 20–40-fold, but the presence of the second cysteine at the active site in the wild-type enzyme increases the k cat by over 200-fold. A model is developed in which kinetic scanning for disulfides of increasing reactivity is timed against an intramolecular clock provided by the second cysteine at the active site. This provides an alternative, more efficient mechanism for rearrangement involving the reduction and reoxidation of substrate disulfides.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.272.14.8845