Characterization of a Novel Glycoprotein Isolated from the Basement Membrane Matrix of the Engelbreth-Holm-Swarm Tumor

A previously undescribed protein has been isolated and purified from the extracellular matrix of the Engelbreth-Holm-Swarm (EHS) tumor, a murine tumor that synthesizes an extensive matrix composed of basement membrane molecules. Molecular characterization of the molecule determined that it is a glyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1989-03, Vol.264 (9), p.5141-5147
Hauptverfasser: Robinson, L K, Murrah, V A, Moyer, M P, Rohrbach, D H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A previously undescribed protein has been isolated and purified from the extracellular matrix of the Engelbreth-Holm-Swarm (EHS) tumor, a murine tumor that synthesizes an extensive matrix composed of basement membrane molecules. Molecular characterization of the molecule determined that it is a glycoprotein with internal disulfide bonds and an isoelectric point of 6.0. Electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the glycoprotein migrated as a diffuse band with a molecular weight of approximately 72,000–80,000. The amino acid composition was significantly different from known basement membrane components. Polyclonal antibodies that specifically recognize the glycoprotein localized it to the kidney glomerular basement membrane. These antibodies did not cross-react with either known basement membrane components (laminin, type IV collagen, and heparan sulfate proteoglycan), with 70K “culture shock” protein or with components of normal mouse serum (including mouse transferrin, albumin, or α-fetoprotein), when analyzed by “Western” immunoblots. Our data indicate that the glycoprotein is synthesized by the EHS tumor cells and is present at relatively high levels in the EHS tumor matrix.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)83710-3