High Throughput Parallel Analysis of Hundreds of Patient Samples for More Than 100 Mutations in Multiple Disease Genes

As more mutations are identified in genes of known sequence, there is a crucial need in the areas of medical genetics and genome analysis for rapid, accurate and cost-effective methods of mutation detection. We have developed a multiplex allele-specific diagnostic assay (MASDA) for analysis of large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 1997-03, Vol.6 (3), p.337-347
Hauptverfasser: Shuber, Anthony P., Michalowsky, Lesley A., Scott Nass, G., Skoletsky, Joel, Hire, Lisa M., Kotsopoulos, Steve K., Phipps, Michael F., Barberio, Dana M., Klinger, Katherine W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As more mutations are identified in genes of known sequence, there is a crucial need in the areas of medical genetics and genome analysis for rapid, accurate and cost-effective methods of mutation detection. We have developed a multiplex allele-specific diagnostic assay (MASDA) for analysis of large numbers of samples (>500) simultaneously for a large number of known mutations (>100) in a single assay. MASDA utilizes oligonucleotide hybridization to interrogate DNA sequences. Multiplex DNA samples are immobilized on a solid support and a single hybridization is performed with a pool of allele-specific oligonucleotide (ASO) probes. Any probes complementary to specific mutations present in a given sample are in effect affinity purified from the pool by the target DNA. Sequence-specific band patterns (fingerprints), generated by chemical or enzymatic sequencing of the bound ASO(s), easily identify the specific mutation(s). Using this design, in a single diagnostic assay, we tested samples for 66 cystic fibrosis (CF) mutations, 14 β-thalassemia mutations, two sickle cell anemia (SCA) mutations, three Tay-Sachs mutations, eight Gaucher mutations, four mutations in Canavan disease, four mutations in Fanconi anemia, and five mutations in BRCA1. Each mutation was correctly identified. Finally, in a blinded study of 106 of these mutations in >500 patients, all mutations were properly identified. There were no false positives or false negatives. The MASDA assay is capable of detecting point mutations as well as small insertion or deletion mutations. This technology is amenable to automation and is suitable for immediate utilization for high-throughput genetic diagnostics in clinical and research laboratories.
ISSN:0964-6906
1460-2083
DOI:10.1093/hmg/6.3.337