Apoptosis of N-type neuroblastoma cells after differentiation with 9-cis-retinoic acid and subsequent washout

The overall survival rate for patients with neuroblastoma has improved over the past two decades, but long-term survival for the subgroup of patients with high-risk disease remains low. In recent years, there has been interest in the potential clinical use of drugs able to induce differentiation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JNCI : Journal of the National Cancer Institute 1997-03, Vol.89 (6), p.446-452
Hauptverfasser: LOVAT, P. E, IRVING, H, ANNICCHIARICO-PETRUZZELLI, M, BERNASSOLA, F, MALCOLM, A. J, PEARSON, A. D. J, MELINO, G, REDFERN, C. P. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The overall survival rate for patients with neuroblastoma has improved over the past two decades, but long-term survival for the subgroup of patients with high-risk disease remains low. In recent years, there has been interest in the potential clinical use of drugs able to induce differentiation of neuroblastoma cells. Since 9-cis-retinoic acid induces better and more sustained differentiation of neuroblastoma in vitro than other retinoic acid isomers, this may be a more appropriate retinoid for use in neuroblastoma therapy. The purpose of this work was to compare the long-term effects of all-trans- and 9-cis-retinoic acid on neuroblastoma differentiation using an N-type (neuroblastic) cell line, SH SY 5Y, as an in vitro model. In addition, we wanted to find out whether 9-cis-retinoic acid would induce programmed cell death (apoptosis) in these N-type neuroblastoma cells and to determine whether the effects of either 9-cis- or all-trans-retinoic acid are dependent on their continued presence in the culture medium. SH SY 5Y cells were incubated in either the continued presence of all-trans- or 9-cis-retinoic acid or for 5 days with retinoic acid followed by culture in the absence of retinoid for up to 13 days. Morphologic changes were observed using phase-contrast and scanning electron microscopy. Apoptosis was determined by flow cytometry of propidium iodide-stained cells and by using terminal deoxynucleotidyl transferase to end-label DNA fragments in situ in apoptotic cells. Culture of SH SY 5Y cells with all-trans- or 9-cis retinoic acid for 5 days induced morphologic differentiation and inhibited cell growth. These effects were maintained in the continuous presence of each retinoic acid isomer but were more profound in cells treated with 9-cis-retinoic acid. The differentiation of cells treated with all-trans-retinoic acid was reversible once retinoic acid was removed from the medium. Conversely, apoptosis was induced in cells treated with 9-cis-retinoic acid for 5 days and cultured for 9 days (4 days after washout) but not in cells cultured in the continuous presence of 9-cis-retinoic acid. This effect was specific to 9-cis-retinoic acid. Previous studies have demonstrated differential responses to all-trans-retinoic acid in N- and S-type (substrate-adherent or Schwann-like) neuroblastoma cells: Apoptosis is induced in S-type cells, whereas differentiation occurs in N-type cells. The present results show that, unlike all-trans-retinoic acid, 9-cis-reti
ISSN:0027-8874
1460-2105
DOI:10.1093/jnci/89.6.446