Tamoxifen activates cellular phospholipase C and D and elicits protein kinase C translocation

The antiestrogen tamoxifen is widely used for endocrine therapy of breast cancer; however, the mechanisms of estrogen receptor-independent interactions of tamoxifen remain ill defined. Here we examine the effect of tamoxifen on the initial steps of cell signal transduction. To this end, phospholipid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 1997-03, Vol.70 (5), p.567-574
Hauptverfasser: CABOT, M. C, ZHANG, Z.-C, CAO, H.-T, LAVIE, Y, GIULIANO, A. E, HAN, T.-Y, JONES, R. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The antiestrogen tamoxifen is widely used for endocrine therapy of breast cancer; however, the mechanisms of estrogen receptor-independent interactions of tamoxifen remain ill defined. Here we examine the effect of tamoxifen on the initial steps of cell signal transduction. To this end, phospholipid metabolism and protein kinase C (PKC) translocation were assessed in CCD986SK human mammary fibroblasts treated with tamoxifen. The addition of tamoxifen resulted in dose-dependent and time-dependent increases in the cellular second messengers phosphatidate (PA) and diacylglycerol (DG). On addition of ethanol to the medium, tamoxifen induced the formation of phosphatidylethanol, demonstrating that tamoxifen activates phospholipase D (PLD). Cellular DG also increased in the presence of ethanol, showing that tamoxifen also activates phospholipase C (PLC). In cells prelabeled with choline and ethanolamine, tamoxifen caused increases in choline, phosphorylcholine, ethanolamine and phosphorylethanolamine. Structure-activity relationship studies for activation of PLD revealed that tamoxifen was the most effective, whereas 4-hydroxy tamoxifen was nearly devoid of activity. Phorbol diesters also activated PLD, but estrogen had no influence. Pretreatment of cells with phorbol dibutyrate (PKC down-regulation protocol) blocked phorbol diester- and tamoxifen-induced PLD activity. Exposure of cells to the PKC inhibitor GF 109203X diminished tamoxifen-induced PLD activity. Addition of tamoxifen to cultures elicited selective membrane association of PKC epsilon. We conclude that tamoxifen exerts considerable extra-nuclear influence at the transmembrane signaling level. These events may contribute to effects beyond the scope of estrogen receptor-dependent actions.
ISSN:0020-7136
1097-0215
DOI:10.1002/(SICI)1097-0215(19970304)70:5<567::AID-IJC13>3.0.CO;2-A