The role of liquid mixing and gas-phase dispersion in a submerged, sparged root reactor

An Agrobacterium-transformed root culture of Solanum tuberosum was grown in a 15-l bubble column. The specific respiration rate decreased by a factor of ten as the tissue grew over a 25-day culture period. On days 5, 8, 13, and 21, respiration was shown to be independent of aeration rate over a rang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enzyme and microbial technology 1997-02, Vol.20 (3), p.207-213
Hauptverfasser: Tescione, Lia D., Ramakrishnan, Divakar, Curtis, Wayne R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An Agrobacterium-transformed root culture of Solanum tuberosum was grown in a 15-l bubble column. The specific respiration rate decreased by a factor of ten as the tissue grew over a 25-day culture period. On days 5, 8, 13, and 21, respiration was shown to be independent of aeration rate over a range of 0.05–0.4 vvm (volume of air per volume of liquid min −1). Gas dispersion measured from argon tracer residence time distributions increased fourfold due to increased stagnation and channeling of gas through the bed of growing roots; however, introduction of an antifoam surfactant on day 20 greatly reduced dispersion with no accompanying change in respiration. Taken together, the gas dispersion and respiration studies suggest that the gas-liquid interface is not the dominant resistance to oxygen mass transfer. Liquid mixing time measured with a dye tracer increased from 1.45 ± 0.45 min with no root tissue to 40.2 ± 1.6 min with 180 g FW l −1 of roots in the column. In addition, the oxygen uptake rate of growing tips (5.2 ± 0.2 mm) of individual root segments of S. tuberosum measured in a stirred microcell (600 μl) increased with the oxygen tension of the medium. Based on these results, the role of liquid mixing, gas-phase dispersion, and diffusion in the tissue in the scaleup of root culture is discussed.
ISSN:0141-0229
1879-0909
DOI:10.1016/S0141-0229(96)00112-3