Engineering pathways for malate degradation in Saccharomyces cerevisiae

Deacidification of grape musts is crucial for the production of well-balanced wines, especially in colder regions of the world. The major acids in wine are tartaric and malic acid. Saccharomyces cerevisiae cannot degrade malic acid efficiently due to the lack of a malate transporter and the low subs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 1997-03, Vol.15 (3), p.253-257
Hauptverfasser: Volschenk, H, Viljoen, M, Grobler, J, Petzold, B, Bauer, F, Subden, R.E, Young, R.A, Lonvaud, A, Denayrolles, M, Van Vuuren, H.J.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deacidification of grape musts is crucial for the production of well-balanced wines, especially in colder regions of the world. The major acids in wine are tartaric and malic acid. Saccharomyces cerevisiae cannot degrade malic acid efficiently due to the lack of a malate transporter and the low substrate affinity of its malic enzyme. We have introduced efficient pathways for malate degradation in S. cerevisiae by cloning and expressing the Schizosaccharomyces pombe malate permease (mae1) gene with either the S. pombe malic enzyme (mae2) or Lactococcus lactis malolactic (mleS) gene in this yeast. Under aerobic conditions, the recombinant strain expressing the mae1 and mae2 genes efficiently degraded 8 g/L of malate in a glycerol-ethanol medium within 7 days. The recombinant malolactic strain of S. cerevisiae (mae1 and mleS genes) fermented 4.5 g/L of malate in a synthetic grape must within 4 days.
ISSN:1087-0156
1546-1696
DOI:10.1038/nbt0397-253