Conservation of complex DNA recognition domains between families of restriction enzymes
One polypeptide, designated S, confers sequence-specificity to the multisubunit type I restriction enzymes. Two families of such enzymes, K and A, include members that recognize diverse, bipartite, target sequences. The S polypeptides of the K family, while having areas of near identity, also contai...
Gespeichert in:
Veröffentlicht in: | Cell 1989-01, Vol.56 (1), p.103-109 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One polypeptide, designated S, confers sequence-specificity to the multisubunit type I restriction enzymes. Two families of such enzymes, K and A, include members that recognize diverse, bipartite, target sequences. The S polypeptides of the K family, while having areas of near identity, also contain two extensive regions of variable sequence. We now show that one of these, comprising the N-terminal 150 amino acids, specifies recognition of one component of the bipartite target sequence. We have determined the sequence recognized by EcoE, a member of the A family. This sequence, 5′GAG(N
7)ATGC, has the trinucletodie GAG in common with EcoA and with StySB of the K family. We determined the nucleotide sequences of the
S genes of EcoA and EcoE, and compared their predicted amino acid sequences with each other and with those of the five members of the K family. There is no general sequence similarity between families, but the domain of the S polypeptide of StySB, which specifies GAG, shows nearly 50 per cent identity with the amino variable region of the S polypeptides of EcoA and EcoE. A complex domain that recognizes and directs methylation of GAG is therefore common to enzymes of generally dissimilar amino acid sequence. |
---|---|
ISSN: | 0092-8674 1097-4172 |
DOI: | 10.1016/0092-8674(89)90988-4 |