Single-step selection of mammalian cell mutants deficient in CTP synthetase
A single-step selection of Chinese hamster V79 cells deficient in CTP synthetase (CTPS-) is presented. The underlying principle of the direct selection is the differential and efficient killing of synchronized wild-type cells through incorporation of [3H]uridine and [3H]thymidine. The CTPS- mutant c...
Gespeichert in:
Veröffentlicht in: | Somatic cell and molecular genetics 1989, Vol.15 (1), p.85-91 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A single-step selection of Chinese hamster V79 cells deficient in CTP synthetase (CTPS-) is presented. The underlying principle of the direct selection is the differential and efficient killing of synchronized wild-type cells through incorporation of [3H]uridine and [3H]thymidine. The CTPS- mutant cells were recovered by virtue of their not engaging in DNA synthesis, because (1) CTPS- cells are deficient in CTP synthetase and thus are unable to convert [3H]UTP into [3H]CTP, which eventually is converted into [3H]dCTP and incorporated into DNA; (2) the growth of CTPS- mutant cells was arrested as a result of cytidine deprivation, thus escaping the killing by the incorporation of [3H]thymidine. The isolated mutant clones are auxotrophic for cytidine and are stable in phenotype with a reversion frequency of less than 1 x 10(-7). The mutant cells have no or very low CTP synthetase activity when tested by in vitro CTP synthetase assay or by whole-cell [3H]uridine labeling assay. This modified "tritium suicide" method combined with the S-phase cell synchronization could provide a powerful means for the recovery from the cell population of nondividing mutant cells that are auxotrophic for some special nutrient requirement. |
---|---|
ISSN: | 0740-7750 1572-9931 |
DOI: | 10.1007/BF01534673 |