A cDNA Encoding Fish Fibroblast Growth Factor-2, Which Lacks Alternative Translation Initiation
Here, we describe the isolation of a rainbow trout cDNA clone that contains the entire fibroblast growth factor-2 (FGF-2; basic FGF) coding region. Interestingly, the rainbow trout cDNA contains a translation stop codon just upstream of the primary initiating methionine codon and so cannot give rise...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1997-03, Vol.272 (11), p.7285-7289 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, we describe the isolation of a rainbow trout cDNA clone that contains the entire fibroblast growth factor-2 (FGF-2; basic FGF) coding region. Interestingly, the rainbow trout cDNA contains a translation stop codon just upstream of the primary initiating methionine codon and so cannot give rise to the longer forms of FGF-2 that are produced in mammals by alternative translation initiation at leucines farther upstream. Transfection of human FGF-2 cDNA into fish cells shows that fish cells can initiate protein synthesis at an upstream leucine CUG codon; surprisingly, however, synthesis is initiated only at the most 5′ CUG and not at the two subsequent CUG codons or the methionine AUG codon also used in mammalian cells. Like other FGF-2 proteins, bacterially produced rainbow trout FGF-2 protein binds tightly to heparin-Sepharose and also promotes the proliferation of fibroblast cells. However, the protein differs from all others previously identified at amino acids 121-123, which are part of the proposed highly conserved receptor-binding domain. Comparisons of the efficacies of recombinant wild-type and mutant rainbow trout FGF-2 proteins demonstrate that these three amino acids are critical to the activity of FGF-2. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.272.11.7285 |