A Single STAT Recruitment Module in a Chimeric Cytokine Receptor Complex Is Sufficient for STAT Activation

We established a system of receptor chimeras that enabled us to induce heterodimerization of different cytoplasmic tails. Fusion constructs were created that are composed of the extracellular parts of the interleukin-5 receptor α and β chains, respectively, and the transmembrane and intracellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1997-02, Vol.272 (8), p.5269-5274
Hauptverfasser: Behrmann, I, Janzen, C, Gerhartz, C, Schmitz-Van de Leur, H, Hermanns, H, Heesel, B, Graeve, L, Horn, F, Tavernier, J, Heinrich, P C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We established a system of receptor chimeras that enabled us to induce heterodimerization of different cytoplasmic tails. Fusion constructs were created that are composed of the extracellular parts of the interleukin-5 receptor α and β chains, respectively, and the transmembrane and intracellular parts of gp130, the signal transducing chain of the interleukin-6 receptor complex. In COS-7 transfectants we observed a dose-dependent interleukin-5-inducible STAT1 activation for which the presence of both the α and the β chain chimera was needed. No STAT activity was detected if one of the cytoplasmic tails of the receptor complex was deleted, indicating that STAT activity resulted from a receptor dimer rather than from higher receptor aggregates. We further investigated whether dimerization of STAT1 depends on the juxtaposition of two STAT recruitment modules in a receptor complex. We show that a receptor dimer with only a single STAT1 docking site was still able to lead to STAT1 activation. This indicates that the formation of a paired set of STAT binding sites in a receptor complex is not the prerequisite for STAT factor dimerization. Our findings are discussed in view of alternative STAT dimerization models.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.272.8.5269