Prion protein gene expression in cultured cells
A single copy gene encodes both the scrapie (PrPSc) and cellular (PrPC) isoforms of the prion protein (PrP). Cultured cell lines were found to express the endogenous PrP mRNA at levels comparable to those observed in the brains of adult rodents; however, these cells were invariably found to express...
Gespeichert in:
Veröffentlicht in: | Protein engineering 1988-04, Vol.2 (1), p.69-76 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A single copy gene encodes both the scrapie (PrPSc) and cellular (PrPC) isoforms of the prion protein (PrP). Cultured cell lines were found to express the endogenous PrP mRNA at levels comparable to those observed in the brains of adult rodents; however, these cells were invariably found to express greatly reduced levels of PrP. In all the cell lines examined, PrP was undetectable by Western immunoblot analysis. These cells were also poor recipients for expression constructs linking the hamster PrP gene open reading frame to several strong eukaryotic promoters; stable clones derived by transfection of these expression vectors failed to show elevated expression of PrP. When extremely high levels of PrP mRNA were produced using either an insect baculovirus or a mammalian SV40 based vector, significant quantities of PrP were produced, although in both cases the proteins were apparently processed differently from the PrPC observed in brains. In an expression system using an SV40 late promoter vector in monkey COS-7 cells, a significant fraction of PrP was transported to the cell surface where PrPC is found in vivo. PrP synthesized by the baculovirus vector failed to induce scrapie in hamsters and did not possess the characteristics of the PrPSc isoform associated with infectivity. The SV40 late promoter vector system may permit experiments designed to elucidate the role of PrPSc during scrapie infection as well as the function of PrPC in normal metabolism. |
---|---|
ISSN: | 1741-0126 0269-2139 1741-0134 1460-213X |
DOI: | 10.1093/protein/2.1.69 |