Raf-1/bcl-2 phosphorylation : A step from microtubule damage to cell death

Recent studies have shown that paclitaxel leads to activation of Raf-1 kinase and have suggested that this activation is essential for bcl-2 phosphorylation and apoptosis. In the present study, we demonstrate that, in addition to paclitaxel, other agents that interact with tubulin and microtubules a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 1997, Vol.57 (1), p.130-135
Hauptverfasser: BLAGOSKLONNY, M. V, GIANNAKAKOU, P, EL-DEIRY, W. S, KINGSTON, D. G. I, HIGGS, P. I, NECKERS, L, FOJO, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies have shown that paclitaxel leads to activation of Raf-1 kinase and have suggested that this activation is essential for bcl-2 phosphorylation and apoptosis. In the present study, we demonstrate that, in addition to paclitaxel, other agents that interact with tubulin and microtubules also induce Raf-1/bcl-2 phosphorylation, whereas DNA-damaging drugs, antimetabolites, and alkylating agents do not. Activation of Raf-1 kinase by paclitaxel is linked to tubulin polymerization; the effect is blunted in paclitaxel-resistant cells, the tubulin of which does not polymerize following the addition of paclitaxel. In contrast, vincristine and vinblastine, drugs to which the paclitaxel-resistant cells retain sensitivity were able to bring about Raf-1 phosphorylation. The requirement for disruption of microtubules in this signaling cascade was strengthened further using paclitaxel analogues by demonstrating a correlation between tubulin polymerization, Raf-1/bcl-2 phosphorylation, and cytotoxicity. Inhibition of RNA or protein synthesis prevents Raf-1 activation and bcl-2 phosphorylation, suggesting that an intermediate protein(s) acts upstream of Raf-1 in this microtubule damage-activating pathway. A model is proposed that envisions a pathway of Raf-1 activation and bcl-2 phosphorylation following disruption of microtubular architecture, serving a role similar to p53 induction following DNA damage.
ISSN:0008-5472
1538-7445