Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome

Two novel mitochondrial gene arrangements are identified in an agamid lizard and a ranid frog. Statistical tests incorporating phylogeny indicate a link between novel vertebrate mitochondrial gene orders and movement of the origin of light-strand replication. A mechanism involving errors in light-st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 1997-01, Vol.14 (1), p.91-104
Hauptverfasser: Macey, J R, Larson, A, Ananjeva, N B, Fang, Z, Papenfuss, T J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue 1
container_start_page 91
container_title Molecular biology and evolution
container_volume 14
creator Macey, J R
Larson, A
Ananjeva, N B
Fang, Z
Papenfuss, T J
description Two novel mitochondrial gene arrangements are identified in an agamid lizard and a ranid frog. Statistical tests incorporating phylogeny indicate a link between novel vertebrate mitochondrial gene orders and movement of the origin of light-strand replication. A mechanism involving errors in light-strand replication and tandem duplication of genes is proposed for rearrangement of vertebrate mitochondrial genes. A second mechanism involving small direct repeats also is identified. These mechanisms implicate gene order as a reliable phylogenetic character. Shifts in gene order define major lineages without evidence of parallelism or reversal. The loss of the origin of light-strand replication from its typical vertebrate position evolves in parallel and, therefore, is a less reliable phylogenetic character. Gene junctions also evolve in parallel. Sequencing across multigenic regions, in particular transfer RNA genes, should be a major focus of future systematic studies to locate novel gene orders and to provide a better understanding of the evolution of the vertebrate mitochondrial genome.
doi_str_mv 10.1093/oxfordjournals.molbev.a025706
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78782427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15937240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-c1adb89fa814a8f4caba2ecf3a172296f51875eba2ec7c3518eee2706d209cde3</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EKqXwCUjewC7Fdh5OFixQxUuqxKasI8eZtK4Su9hugL_HaSMkVqzsub53xpqD0A0lc0qK-M58NcbWW7O3WrRu3pm2gn4uCEs5yU7QlKYxjyinxSmaEh7uCYnzc3Th3JYQmiRZNkGTghDCUz5F_erTYG16aPEaNODQGqzDQtfYbwBb0watwa1ab3zkvB0eLOxaJYVXRmOlQyls0NfQgfaDeQj2YD1UVnjAnfJGboyurRKHKaaDS3TWhN_D1XjO0PvT42rxEi3fnl8XD8tIJpz5SFJRV3nRiJwmIm8SKSrBQDaxoJyxImtSmvMUDiKXcagAgIU91IwUsoZ4hm6PfXfWfOzB-bJTTkLbCg1m70qe85wljP9rpGkRcxZWOUP3R6O0xjkLTbmzqhP2u6SkHACVfwGVR0DlCCjkr8dB-6qD-jc9Eol_AJKTmBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15937240</pqid></control><display><type>article</type><title>Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Macey, J R ; Larson, A ; Ananjeva, N B ; Fang, Z ; Papenfuss, T J</creator><creatorcontrib>Macey, J R ; Larson, A ; Ananjeva, N B ; Fang, Z ; Papenfuss, T J</creatorcontrib><description>Two novel mitochondrial gene arrangements are identified in an agamid lizard and a ranid frog. Statistical tests incorporating phylogeny indicate a link between novel vertebrate mitochondrial gene orders and movement of the origin of light-strand replication. A mechanism involving errors in light-strand replication and tandem duplication of genes is proposed for rearrangement of vertebrate mitochondrial genes. A second mechanism involving small direct repeats also is identified. These mechanisms implicate gene order as a reliable phylogenetic character. Shifts in gene order define major lineages without evidence of parallelism or reversal. The loss of the origin of light-strand replication from its typical vertebrate position evolves in parallel and, therefore, is a less reliable phylogenetic character. Gene junctions also evolve in parallel. Sequencing across multigenic regions, in particular transfer RNA genes, should be a major focus of future systematic studies to locate novel gene orders and to provide a better understanding of the evolution of the vertebrate mitochondrial genome.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/oxfordjournals.molbev.a025706</identifier><identifier>PMID: 9000757</identifier><language>eng</language><publisher>United States</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; DNA Primers - genetics ; DNA Replication - genetics ; DNA, Mitochondrial - genetics ; Evolution, Molecular ; Freshwater ; Gene Rearrangement ; Genome ; Lizards - genetics ; Molecular Sequence Data ; Multigene Family ; Nucleic Acid Conformation ; Phylogeny ; Rana limnocharis ; Ranidae - genetics ; Reptiles - genetics ; RNA, Transfer, Asn - chemistry ; RNA, Transfer, Asn - genetics ; RNA, Transfer, Cys - chemistry ; RNA, Transfer, Cys - genetics ; Uromastix acanthinurus ; Vertebrates - genetics</subject><ispartof>Molecular biology and evolution, 1997-01, Vol.14 (1), p.91-104</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-c1adb89fa814a8f4caba2ecf3a172296f51875eba2ec7c3518eee2706d209cde3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9000757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Macey, J R</creatorcontrib><creatorcontrib>Larson, A</creatorcontrib><creatorcontrib>Ananjeva, N B</creatorcontrib><creatorcontrib>Fang, Z</creatorcontrib><creatorcontrib>Papenfuss, T J</creatorcontrib><title>Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Two novel mitochondrial gene arrangements are identified in an agamid lizard and a ranid frog. Statistical tests incorporating phylogeny indicate a link between novel vertebrate mitochondrial gene orders and movement of the origin of light-strand replication. A mechanism involving errors in light-strand replication and tandem duplication of genes is proposed for rearrangement of vertebrate mitochondrial genes. A second mechanism involving small direct repeats also is identified. These mechanisms implicate gene order as a reliable phylogenetic character. Shifts in gene order define major lineages without evidence of parallelism or reversal. The loss of the origin of light-strand replication from its typical vertebrate position evolves in parallel and, therefore, is a less reliable phylogenetic character. Gene junctions also evolve in parallel. Sequencing across multigenic regions, in particular transfer RNA genes, should be a major focus of future systematic studies to locate novel gene orders and to provide a better understanding of the evolution of the vertebrate mitochondrial genome.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>DNA Primers - genetics</subject><subject>DNA Replication - genetics</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Evolution, Molecular</subject><subject>Freshwater</subject><subject>Gene Rearrangement</subject><subject>Genome</subject><subject>Lizards - genetics</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Nucleic Acid Conformation</subject><subject>Phylogeny</subject><subject>Rana limnocharis</subject><subject>Ranidae - genetics</subject><subject>Reptiles - genetics</subject><subject>RNA, Transfer, Asn - chemistry</subject><subject>RNA, Transfer, Asn - genetics</subject><subject>RNA, Transfer, Cys - chemistry</subject><subject>RNA, Transfer, Cys - genetics</subject><subject>Uromastix acanthinurus</subject><subject>Vertebrates - genetics</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctOwzAQRS0EKqXwCUjewC7Fdh5OFixQxUuqxKasI8eZtK4Su9hugL_HaSMkVqzsub53xpqD0A0lc0qK-M58NcbWW7O3WrRu3pm2gn4uCEs5yU7QlKYxjyinxSmaEh7uCYnzc3Th3JYQmiRZNkGTghDCUz5F_erTYG16aPEaNODQGqzDQtfYbwBb0watwa1ab3zkvB0eLOxaJYVXRmOlQyls0NfQgfaDeQj2YD1UVnjAnfJGboyurRKHKaaDS3TWhN_D1XjO0PvT42rxEi3fnl8XD8tIJpz5SFJRV3nRiJwmIm8SKSrBQDaxoJyxImtSmvMUDiKXcagAgIU91IwUsoZ4hm6PfXfWfOzB-bJTTkLbCg1m70qe85wljP9rpGkRcxZWOUP3R6O0xjkLTbmzqhP2u6SkHACVfwGVR0DlCCjkr8dB-6qD-jc9Eol_AJKTmBQ</recordid><startdate>199701</startdate><enddate>199701</enddate><creator>Macey, J R</creator><creator>Larson, A</creator><creator>Ananjeva, N B</creator><creator>Fang, Z</creator><creator>Papenfuss, T J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>199701</creationdate><title>Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome</title><author>Macey, J R ; Larson, A ; Ananjeva, N B ; Fang, Z ; Papenfuss, T J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-c1adb89fa814a8f4caba2ecf3a172296f51875eba2ec7c3518eee2706d209cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>DNA Primers - genetics</topic><topic>DNA Replication - genetics</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Evolution, Molecular</topic><topic>Freshwater</topic><topic>Gene Rearrangement</topic><topic>Genome</topic><topic>Lizards - genetics</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Nucleic Acid Conformation</topic><topic>Phylogeny</topic><topic>Rana limnocharis</topic><topic>Ranidae - genetics</topic><topic>Reptiles - genetics</topic><topic>RNA, Transfer, Asn - chemistry</topic><topic>RNA, Transfer, Asn - genetics</topic><topic>RNA, Transfer, Cys - chemistry</topic><topic>RNA, Transfer, Cys - genetics</topic><topic>Uromastix acanthinurus</topic><topic>Vertebrates - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macey, J R</creatorcontrib><creatorcontrib>Larson, A</creatorcontrib><creatorcontrib>Ananjeva, N B</creatorcontrib><creatorcontrib>Fang, Z</creatorcontrib><creatorcontrib>Papenfuss, T J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macey, J R</au><au>Larson, A</au><au>Ananjeva, N B</au><au>Fang, Z</au><au>Papenfuss, T J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>1997-01</date><risdate>1997</risdate><volume>14</volume><issue>1</issue><spage>91</spage><epage>104</epage><pages>91-104</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Two novel mitochondrial gene arrangements are identified in an agamid lizard and a ranid frog. Statistical tests incorporating phylogeny indicate a link between novel vertebrate mitochondrial gene orders and movement of the origin of light-strand replication. A mechanism involving errors in light-strand replication and tandem duplication of genes is proposed for rearrangement of vertebrate mitochondrial genes. A second mechanism involving small direct repeats also is identified. These mechanisms implicate gene order as a reliable phylogenetic character. Shifts in gene order define major lineages without evidence of parallelism or reversal. The loss of the origin of light-strand replication from its typical vertebrate position evolves in parallel and, therefore, is a less reliable phylogenetic character. Gene junctions also evolve in parallel. Sequencing across multigenic regions, in particular transfer RNA genes, should be a major focus of future systematic studies to locate novel gene orders and to provide a better understanding of the evolution of the vertebrate mitochondrial genome.</abstract><cop>United States</cop><pmid>9000757</pmid><doi>10.1093/oxfordjournals.molbev.a025706</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 1997-01, Vol.14 (1), p.91-104
issn 0737-4038
1537-1719
language eng
recordid cdi_proquest_miscellaneous_78782427
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Animals
Base Sequence
DNA Primers - genetics
DNA Replication - genetics
DNA, Mitochondrial - genetics
Evolution, Molecular
Freshwater
Gene Rearrangement
Genome
Lizards - genetics
Molecular Sequence Data
Multigene Family
Nucleic Acid Conformation
Phylogeny
Rana limnocharis
Ranidae - genetics
Reptiles - genetics
RNA, Transfer, Asn - chemistry
RNA, Transfer, Asn - genetics
RNA, Transfer, Cys - chemistry
RNA, Transfer, Cys - genetics
Uromastix acanthinurus
Vertebrates - genetics
title Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20novel%20gene%20orders%20and%20the%20role%20of%20light-strand%20replication%20in%20rearrangement%20of%20the%20vertebrate%20mitochondrial%20genome&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Macey,%20J%20R&rft.date=1997-01&rft.volume=14&rft.issue=1&rft.spage=91&rft.epage=104&rft.pages=91-104&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/oxfordjournals.molbev.a025706&rft_dat=%3Cproquest_cross%3E15937240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15937240&rft_id=info:pmid/9000757&rfr_iscdi=true