Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome
Two novel mitochondrial gene arrangements are identified in an agamid lizard and a ranid frog. Statistical tests incorporating phylogeny indicate a link between novel vertebrate mitochondrial gene orders and movement of the origin of light-strand replication. A mechanism involving errors in light-st...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 1997-01, Vol.14 (1), p.91-104 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two novel mitochondrial gene arrangements are identified in an agamid lizard and a ranid frog. Statistical tests incorporating phylogeny indicate a link between novel vertebrate mitochondrial gene orders and movement of the origin of light-strand replication. A mechanism involving errors in light-strand replication and tandem duplication of genes is proposed for rearrangement of vertebrate mitochondrial genes. A second mechanism involving small direct repeats also is identified. These mechanisms implicate gene order as a reliable phylogenetic character. Shifts in gene order define major lineages without evidence of parallelism or reversal. The loss of the origin of light-strand replication from its typical vertebrate position evolves in parallel and, therefore, is a less reliable phylogenetic character. Gene junctions also evolve in parallel. Sequencing across multigenic regions, in particular transfer RNA genes, should be a major focus of future systematic studies to locate novel gene orders and to provide a better understanding of the evolution of the vertebrate mitochondrial genome. |
---|---|
ISSN: | 0737-4038 1537-1719 |
DOI: | 10.1093/oxfordjournals.molbev.a025706 |