Electric polarization of polyelectrolyte and colloid media: dielectric versus electro-optic approach

The theories of dielectric dispersion and of electric birefringence as a representative of electro-optic methods are considered and it is shown that they both depend in a similar way simply on the real part of the complex electric polarizability of the macromolecules or the particles. The latter als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical chemistry 1996-01, Vol.58 (1), p.165-172
1. Verfasser: Stoylov, S.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The theories of dielectric dispersion and of electric birefringence as a representative of electro-optic methods are considered and it is shown that they both depend in a similar way simply on the real part of the complex electric polarizability of the macromolecules or the particles. The latter also contains the permanent dipole moment. Experimental data on dielectric dispersion, electric birefringence and electric light scattering of strongly elongated, rod-like poly(tetrafluoroethylene) particles are compared and an attempt is made to extend the dielectric dispersion curve to lower frequencies using electric birefringence and electric light scattering data. Further, the experimental data on dielectric dispersion, electric light scattering, electro-orientation and dipolophoresis for the more complicated Escherichia coli particles are compared. Again, the possibility to extend the 10 kHz–100 MHz dielectric dispersion curve down below 1 Hz by using electric light scattering data is examined. The good matching of the dielectric dispersion and electric light scattering frequency curves found in the overlapping frequency range (10 kHz-5 MHz) essentially enhances the chance that dielectric dispersion below 1 MHz is related to α dispersion and not to electrode polarization. Thus it is not only possible to obtain additional information on the mechanism of polarization at lower-frequency dielectric dispersion, but also to extend our knowledge about the effective dielectric properties of biological complex fluids to frequencies essentially below 1 MHz. This could be important for the understanding of the effect of low-frequency electromagnetic fields on living matter.
ISSN:0301-4622
1873-4200
DOI:10.1016/0301-4622(95)00096-8