Genetically Engineered Bacteria:  Electrochemical Sensing Systems for Antimonite and Arsenite

A bacterial sensing system that responds selectively to antimonite and arsenite has been investigated. The bacteria used in these studies have been genetically engineered to produce the enzyme β-galactosidase in response to these ions. This is accomplished by using a plasmid that incorporates the ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 1997-01, Vol.69 (1), p.16-20
Hauptverfasser: Scott, Donna L., Ramanathan, Sridhar, Shi, Weiping, Rosen, Barry P., Daunert, Sylvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bacterial sensing system that responds selectively to antimonite and arsenite has been investigated. The bacteria used in these studies have been genetically engineered to produce the enzyme β-galactosidase in response to these ions. This is accomplished by using a plasmid that incorporates the gene for β-galactosidase (reporter gene) under the control of the promoter of the ars operon. This plasmid also encodes for the ArsR protein, a regulatory protein of the ars operon, which, in the absence of antimonite or arsenite, restricts the expression of β-galactosidase. In the presence of antimonite or arsenite the ArsR protein is released from the operator/promoter region of the ars operon and β-galactosidase is expressed. The activity of this enzyme was monitored electrochemically using p-aminophenyl β-d-galactopyranoside as the substrate. The bacterial sensing system responds selectively to arsenite and antimonite (and to a lesser extent arsenate) and shows no significant response to phosphate, sulfate, nitrate, and carbonate.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac960788x