Analytical solutions for bleeding of concrete due to consolidation

The bleeding of cement pastes, cement mortars, and concrete is due primarily to the self-weight consolidation of the granular skeleton formed by the solid constituents thereof. However, the effects of hydration can end this process prematurely. Linear finite- and small-strain analytical solutions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cement and concrete research 2010-10, Vol.40 (10), p.1531-1540
Hauptverfasser: Morris, P.H., Dux, P.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bleeding of cement pastes, cement mortars, and concrete is due primarily to the self-weight consolidation of the granular skeleton formed by the solid constituents thereof. However, the effects of hydration can end this process prematurely. Linear finite- and small-strain analytical solutions of bleeding as a consolidation process that account for the effects of hydration are presented and then validated by comparison with laboratory data for cement pastes and concretes. Contrary to earlier assertions that a finite-strain model is required to model bleeding, the new finite- and small-strain solutions model the bleeding of the relatively shallow specimens analysed equally well. However, further research is necessary to establish whether small-strain solutions can model adequately the bleeding of comparatively deep concrete layers, and methods of determining the values of input parameters for the new solutions are also required. A potential method of determining one of these, the time of set, is discussed briefly.
ISSN:0008-8846
1873-3948
DOI:10.1016/j.cemconres.2010.06.007