Effect of Carbon on Frictional Wear Behaviours of High Vanadium High Speed Steel under Dry Sliding Condition

The high vanadium high-speed steel (HVHSS) with about 9wt% vanadium and different carbon contents were prepared using casting process. The effects of carbon on wear properties of HVHSS were studied using pin-on-ring tester, and the failure behaviors were investigated via SEM. Results show the optima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2010-01, Vol.654-656, p.370-373
Hauptverfasser: Li, Ji Wen, Zhang, Guo Shang, Long, Rui, Xu, Liu Jie, Wei, Shi Zhong, Ji, Ying Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high vanadium high-speed steel (HVHSS) with about 9wt% vanadium and different carbon contents were prepared using casting process. The effects of carbon on wear properties of HVHSS were studied using pin-on-ring tester, and the failure behaviors were investigated via SEM. Results show the optimal wear resistance is obtained when HVHSS possesses moderate carbon content (2.58wt.%). The cause is that the matrix microstructure of moderate carbon HVHSS is mainly low-carbon lath martensite with good toughness and high hardness, and it can effectively resist micro-cutting and figure wear at the same time, so the role of high-hardness vanadium carbides (VC) can be played enough because of the strong support of matrix. If carbon content is too low, the wear failure of HVHSS is mainly caused by severe micro-cutting and adhesive wear on contact surface because the matrix microstructure of high speed steel is ferrite with very low hardness, which leads to poor wear resistance. While, the matrix microstructure is mainly composed of high carbon martensite with poor toughness when carbon content is too high, therefore, it possesses very poor resistance to cycle fatigue and thermal fatigue, resulting in decrease of wear resistance.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.654-656.370