Computation of the flow and thermal fields in a thermoacoustic refrigerator
The hydro- and thermodynamic processes near and within two-dimensional stack plates are simulated by numerical solution of the unsteady compressible Navier–Stokes, continuity, energy equations, and the equation of state (for air as the working fluid). The stack is assumed to consist of flat plates o...
Gespeichert in:
Veröffentlicht in: | International communications in heat and mass transfer 2010-08, Vol.37 (7), p.748-755 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hydro- and thermodynamic processes near and within two-dimensional stack plates are simulated by numerical solution of the unsteady compressible Navier–Stokes, continuity, energy equations, and the equation of state (for air as the working fluid). The stack is assumed to consist of flat plates of equal thickness. The second order mean velocity field is computed in the neighborhood of the stack plates. In the stack plate extremities the vortical mean flow is observed which is due to the abrupt change of a slip condition to a no-slip velocity boundary condition. The temperature of the stack is governed by the energy equation; therefore the entire problem is treated as a conjugate heat transfer problem. The temperature fields in the neighborhood of the solid stack plate are also observed. From the location of the heat exchangers in Fig. 1(a), it is obvious that knowledge of the flow and thermal fields at the edges of the stack plates is the key for the development of a systematic design methodology for heat exchangers in thermoacoustic devices. |
---|---|
ISSN: | 0735-1933 1879-0178 |
DOI: | 10.1016/j.icheatmasstransfer.2010.04.006 |