Form Factor for the Design of Pultruded FRP Structural Members under Compression
As a new construction material, fiber reinforced polymeric plastic structural shapes are readily available. Therefore, construction and structure rehabilitation using FRP materials are an ever increasing trend because of FRP material’s superior chemical and mechanical properties compared with those...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2010-01, Vol.654-656, p.2648-2651 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a new construction material, fiber reinforced polymeric plastic structural shapes are readily available. Therefore, construction and structure rehabilitation using FRP materials are an ever increasing trend because of FRP material’s superior chemical and mechanical properties compared with those of conventional construction materials such as steel and concrete. Among the FRP materials, pultruded fiber reinforced polymeric plastics are the most popular for civil engineering applications. However, it has relatively low modulus of elasticity and also cross-section of structural shapes is composed of plate components such as flange and web. Therefore, stability is an important issue in the design of pultruded structural shapes. For the design of pultruded structural member under compression, buckling and post-buckling strengths of plate components should be taken into account. In the structural steel design following AISC/ LRFD, this effect, in addition to the buckling strength, is incorporated with a form factor. In this research, the form factor for the design of pultruded structural shapes under compression is investigated. Based on the analytical study, the form factor for the design of pultruded structural shapes have been suggested. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.654-656.2648 |