Strong ( n, t, n) verifiable secret sharing scheme
A ( t, n) secret sharing divides a secret into n shares in such a way that any t or more than t shares can reconstruct the secret; but fewer than t shares cannot reconstruct the secret. In this paper, we extend the idea of a ( t, n) secret sharing scheme and give a formal definition on the ( n, t, n...
Gespeichert in:
Veröffentlicht in: | Information sciences 2010-08, Vol.180 (16), p.3059-3064 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A (
t,
n) secret sharing divides a secret into
n shares in such a way that any
t or more than
t shares can reconstruct the secret; but fewer than
t shares cannot reconstruct the secret. In this paper, we extend the idea of a (
t,
n) secret sharing scheme and give a formal definition on the (
n,
t,
n) secret sharing scheme based on Pedersen’s (
t,
n) secret sharing scheme. We will show that the (
t,
n) verifiable secret sharing (VSS) scheme proposed by Benaloh can only ensure that all shares are
t-consistent (i.e. any subset of
t shares defines the same secret); but shares may not satisfy the security requirements of a (
t,
n) secret sharing scheme. Then, we introduce new notions of
strong t-consistency and
strong VSS. A strong VSS can ensure that (a) all shares are
t-consistent, and (b) all shares satisfy the security requirements of a secret sharing scheme. We propose a strong (
n,
t,
n) VSS based on Benaloh’s VSS. We also prove that our proposed (
n,
t,
n) VSS satisfies the definition of a strong VSS. |
---|---|
ISSN: | 0020-0255 1872-6291 |
DOI: | 10.1016/j.ins.2010.04.016 |