Advanced research and development for plasma processing of polymers with combinatorial plasma-process analyzer

A plasma-process analyzer has been developed on the basis of combinatorial method, in which process examinations with continuous variations of plasma-process conditions can be carried out on a substrate holder with an inclined distribution of process parameters. Combinatorial plasma-process analyses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2010-09, Vol.518 (22), p.6320-6324
Hauptverfasser: Setsuhara, Yuichi, Cho, Ken, Takenaka, Kosuke, Shiratani, Masaharu, Sekine, Makoto, Hori, Masaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A plasma-process analyzer has been developed on the basis of combinatorial method, in which process examinations with continuous variations of plasma-process conditions can be carried out on a substrate holder with an inclined distribution of process parameters. Combinatorial plasma-process analyses have been demonstrated for examinations of plasma-polymer interactions in terms of etching characteristics and surface morphologies in order to show feasibility and effectiveness of the methodology as advanced research and development for next-generation plasma nano processes. The etching properties and surface morphologies have been investigated for polyethylene terephthalate (PET) films exposed to argon–oxygen mixture plasmas. The etching depth data obtained from three independent batches of the experiments showed universal and almost linear dependence with increasing product of (ion saturation current) × (exposure time); i.e. ion dose. Surface roughness of the polymer slightly increased with increasing ion dose, while the mean spacing after plasma exposure was found to decrease monotonically with increasing ion dose but was saturated at the level of approximately 250 nm.
ISSN:0040-6090
1879-2731
DOI:10.1016/j.tsf.2010.03.055