Properties of X-, C- and L-band repeat-pass interferometric SAR coherence in Mediterranean pine forests affected by fires

Synthetic Aperture Radar (SAR) data has been investigated to determine the relationship between burn severity and interferometric coherence at three sites affected by forest fires in a hilly Mediterranean environment. Repeat-pass SAR images were available from the TerraSAR-X, ERS-1/2, Envisat ASAR a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2010-10, Vol.114 (10), p.2182-2194
Hauptverfasser: Tanase, Mihai A., Santoro, Maurizio, Wegmüller, Urs, de la Riva, Juan, Pérez-Cabello, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthetic Aperture Radar (SAR) data has been investigated to determine the relationship between burn severity and interferometric coherence at three sites affected by forest fires in a hilly Mediterranean environment. Repeat-pass SAR images were available from the TerraSAR-X, ERS-1/2, Envisat ASAR and ALOS PALSAR sensors. Coherence was related to measurements of burn severity (Composite Burn Index) and remote sensing estimates expressed by the differenced normalized burn ratio (dNBR) index. In addition, the effects of topography and weather on coherence estimates were assessed. The analysis for a given range of local incidence angle showed that the co-polarized coherence increases with the increase of burn severity at X- and C-band whereas cross-polarized coherence was practically insensitive to burn severity. Higher sensitivity to burn severity was found at L-band for both co- and cross-polarized channels. The association strength between coherence and burn severity was strongest for images acquired under stable, dry environmental conditions. When the local incidence angle is accounted for the determination coefficients increased from 0.6 to 0.9 for X- and C-band. At L-band the local incidence angle had less influence on the association strength to burn severity.
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2010.04.021