Modeling the environmental dependence of pit growth using neural network approaches
Corrosion pits have been shown to nucleate fatigue cracks, and this is a critical issue for aerospace aluminum alloys, which experience a variety of corrosive environments in service. Consequently, modeling pit growth as a function of environment is necessary. In this study, two orientations of AA70...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2010-09, Vol.52 (9), p.3070-3077 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Corrosion pits have been shown to nucleate fatigue cracks, and this is a critical issue for aerospace aluminum alloys, which experience a variety of corrosive environments in service. Consequently, modeling pit growth as a function of environment is necessary. In this study, two orientations of AA7075-T651 blocks were boldly exposed in solutions of varying temperature, pH, and [Cl
−] for three exposure times. Optical profilometry and Weibull functions were utilized to characterize pit depth and diameter distributions. Artificial neural networks were a powerful tool in effectively modeling maximum pit dimensions and Weibull parameters. In most environments, pit growth followed
t
1/3 kinetics. |
---|---|
ISSN: | 0010-938X 1879-0496 |
DOI: | 10.1016/j.corsci.2010.05.027 |