Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture

The present work investigated the effects of salicylic acid (SA) on the accumulation of phenolic compounds and the activities of PAL, TAT, SOD, CAT and POD enzymes in the Salvia miltiorrhiza cell culture. When SA is applied to the cell culture, phenolic compounds will increase and PAL, TAT, SOD, CAT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biotechnology 2010-07, Vol.148 (2), p.99-104
Hauptverfasser: Dong, Juane, Wan, Guowei, Liang, Zongsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present work investigated the effects of salicylic acid (SA) on the accumulation of phenolic compounds and the activities of PAL, TAT, SOD, CAT and POD enzymes in the Salvia miltiorrhiza cell culture. When SA is applied to the cell culture, phenolic compounds will increase and PAL, TAT, SOD, CAT, and POD enzymes will become more active. The accumulations of phenolic compounds and the PAL activity were stimulated 8 h after the treatment with SA. The TAT activity was stimulated after 48 h. The resulting antioxidative enzymes’ activities were greatly improved. SA elicitation on the phenolic acid accumulation was depended upon the application dosage and the time-duration. The suitable SA concentration for eliciting phenolic compound accumulations was 6.25–22.5 mg/L. The elicitation effect of SA on phenolic compound accumulations correlated with the PAL activity, but not with the TAT activity. This indicates that PAL may be the key enzyme for the biosynthesis of salvianolic acid B and caffeic acid. The raised PAL activity leads to the improvement of the quantity of phenolic compounds. This could be of particular significance by using plant cell culture systems for biotechnological production of plant secondary metabolites such as salvianolic acid B and caffeic acid.
ISSN:0168-1656
1873-4863
DOI:10.1016/j.jbiotec.2010.05.009