Polynomial Hamiltonian systems with a nilpotent critical point

The study of Hamiltonian systems is important for space physics and astrophysics. In this paper, we study local behavior of an isolated nilpotent critical point for polynomial Hamiltonian systems. We prove that there are exact three cases: a center, a cusp or a saddle. Then for quadratic and cubic H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2010-08, Vol.46 (4), p.521-525
Hauptverfasser: Han, Maoan, Shu, Chenggang, Yang, Junmin, Chian, Abraham C.-L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study of Hamiltonian systems is important for space physics and astrophysics. In this paper, we study local behavior of an isolated nilpotent critical point for polynomial Hamiltonian systems. We prove that there are exact three cases: a center, a cusp or a saddle. Then for quadratic and cubic Hamiltonian systems we obtain necessary and sufficient conditions for a nilpotent critical point to be a center, a cusp or a saddle. We also give phase portraits for these systems under some conditions of symmetry.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2008.08.025