Background adjustment of cDNA microarray images by Maximum Entropy distributions

Many empirical studies have demonstrated the exquisite sensitivity of both traditional and novel statistical and machine intelligence algorithms to the method of background adjustment used to analyze microarray datasets. In this paper we develop a statistical framework that approaches background adj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical informatics 2010-08, Vol.43 (4), p.496-509
Hauptverfasser: Argyropoulos, Christos, Daskalakis, Antonis, Nikiforidis, George C., Sakellaropoulos, George C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue 4
container_start_page 496
container_title Journal of biomedical informatics
container_volume 43
creator Argyropoulos, Christos
Daskalakis, Antonis
Nikiforidis, George C.
Sakellaropoulos, George C.
description Many empirical studies have demonstrated the exquisite sensitivity of both traditional and novel statistical and machine intelligence algorithms to the method of background adjustment used to analyze microarray datasets. In this paper we develop a statistical framework that approaches background adjustment as a classic stochastic inverse problem, whose noise characteristics are given in terms of Maximum Entropy distributions. We derive analytic closed form approximations to the combined problem of estimating the magnitude of the background in microarray images and adjusting for its presence. The proposed method reduces standardized measures of log expression variability across replicates in situations of known differential and non-differential gene expression without increasing the bias. Additionally, it results in computationally efficient procedures for estimation and learning based on sufficient statistics and can filter out spot measures with intensities that are numerically close to the background level resulting in a noise reduction of about 7%.
doi_str_mv 10.1016/j.jbi.2010.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787045683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046410000407</els_id><sourcerecordid>733981574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-ca14eba39c713977b3049ff06222ce7b1f2c4cd39d31e0af335cd68f2e29d80b3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EgvL4ADbIO1YtYzuJE7Eq5SnxWsDacuxJ5dAkxU4Q_XuMCl3Camakc680h5BjBhMGLDurJ3XpJhziDWICILfIiKWCjyHJYXuzZ8ke2Q-hBmAsTbNdssdBZBwkH5HnC23e5r4bWku1rYfQN9j2tKuouXyc0sYZ32nv9Yq6Rs8x0HJFH_Sna4aGXrW975Yral3ovSuH3nVtOCQ7lV4EPPqZB-T1-upldju-f7q5m03vx0bkST82miVYalEYyUQhZSkgKaoKMs65QVmyipvEWFFYwRB0JURqbJZXHHlhcyjFATld9y599z5g6FXjgsHFQrfYDUHJXEKSZrn4nxSiyFkqk0iyNRmfDsFjpZY-vu1XioH6Nq5qFY2rb-MKhIrGY-bkp30oG7SbxK_iCJyvAYw2Phx6FYzD1qB1Hk2vbOf-qP8CrF-RKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733981574</pqid></control><display><type>article</type><title>Background adjustment of cDNA microarray images by Maximum Entropy distributions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Argyropoulos, Christos ; Daskalakis, Antonis ; Nikiforidis, George C. ; Sakellaropoulos, George C.</creator><creatorcontrib>Argyropoulos, Christos ; Daskalakis, Antonis ; Nikiforidis, George C. ; Sakellaropoulos, George C.</creatorcontrib><description>Many empirical studies have demonstrated the exquisite sensitivity of both traditional and novel statistical and machine intelligence algorithms to the method of background adjustment used to analyze microarray datasets. In this paper we develop a statistical framework that approaches background adjustment as a classic stochastic inverse problem, whose noise characteristics are given in terms of Maximum Entropy distributions. We derive analytic closed form approximations to the combined problem of estimating the magnitude of the background in microarray images and adjusting for its presence. The proposed method reduces standardized measures of log expression variability across replicates in situations of known differential and non-differential gene expression without increasing the bias. Additionally, it results in computationally efficient procedures for estimation and learning based on sufficient statistics and can filter out spot measures with intensities that are numerically close to the background level resulting in a noise reduction of about 7%.</description><identifier>ISSN: 1532-0464</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2010.03.007</identifier><identifier>PMID: 20362072</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; cDNA ; Entropy ; Gene Expression ; Image restoration ; Image segmentation ; Maximum Entropy ; Microarray ; Models, Statistical ; Oligonucleotide Array Sequence Analysis - methods</subject><ispartof>Journal of biomedical informatics, 2010-08, Vol.43 (4), p.496-509</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-ca14eba39c713977b3049ff06222ce7b1f2c4cd39d31e0af335cd68f2e29d80b3</citedby><cites>FETCH-LOGICAL-c384t-ca14eba39c713977b3049ff06222ce7b1f2c4cd39d31e0af335cd68f2e29d80b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbi.2010.03.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20362072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Argyropoulos, Christos</creatorcontrib><creatorcontrib>Daskalakis, Antonis</creatorcontrib><creatorcontrib>Nikiforidis, George C.</creatorcontrib><creatorcontrib>Sakellaropoulos, George C.</creatorcontrib><title>Background adjustment of cDNA microarray images by Maximum Entropy distributions</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>Many empirical studies have demonstrated the exquisite sensitivity of both traditional and novel statistical and machine intelligence algorithms to the method of background adjustment used to analyze microarray datasets. In this paper we develop a statistical framework that approaches background adjustment as a classic stochastic inverse problem, whose noise characteristics are given in terms of Maximum Entropy distributions. We derive analytic closed form approximations to the combined problem of estimating the magnitude of the background in microarray images and adjusting for its presence. The proposed method reduces standardized measures of log expression variability across replicates in situations of known differential and non-differential gene expression without increasing the bias. Additionally, it results in computationally efficient procedures for estimation and learning based on sufficient statistics and can filter out spot measures with intensities that are numerically close to the background level resulting in a noise reduction of about 7%.</description><subject>Algorithms</subject><subject>cDNA</subject><subject>Entropy</subject><subject>Gene Expression</subject><subject>Image restoration</subject><subject>Image segmentation</subject><subject>Maximum Entropy</subject><subject>Microarray</subject><subject>Models, Statistical</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><issn>1532-0464</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EgvL4ADbIO1YtYzuJE7Eq5SnxWsDacuxJ5dAkxU4Q_XuMCl3Camakc680h5BjBhMGLDurJ3XpJhziDWICILfIiKWCjyHJYXuzZ8ke2Q-hBmAsTbNdssdBZBwkH5HnC23e5r4bWku1rYfQN9j2tKuouXyc0sYZ32nv9Yq6Rs8x0HJFH_Sna4aGXrW975Yral3ovSuH3nVtOCQ7lV4EPPqZB-T1-upldju-f7q5m03vx0bkST82miVYalEYyUQhZSkgKaoKMs65QVmyipvEWFFYwRB0JURqbJZXHHlhcyjFATld9y599z5g6FXjgsHFQrfYDUHJXEKSZrn4nxSiyFkqk0iyNRmfDsFjpZY-vu1XioH6Nq5qFY2rb-MKhIrGY-bkp30oG7SbxK_iCJyvAYw2Phx6FYzD1qB1Hk2vbOf-qP8CrF-RKQ</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Argyropoulos, Christos</creator><creator>Daskalakis, Antonis</creator><creator>Nikiforidis, George C.</creator><creator>Sakellaropoulos, George C.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100801</creationdate><title>Background adjustment of cDNA microarray images by Maximum Entropy distributions</title><author>Argyropoulos, Christos ; Daskalakis, Antonis ; Nikiforidis, George C. ; Sakellaropoulos, George C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-ca14eba39c713977b3049ff06222ce7b1f2c4cd39d31e0af335cd68f2e29d80b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>cDNA</topic><topic>Entropy</topic><topic>Gene Expression</topic><topic>Image restoration</topic><topic>Image segmentation</topic><topic>Maximum Entropy</topic><topic>Microarray</topic><topic>Models, Statistical</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Argyropoulos, Christos</creatorcontrib><creatorcontrib>Daskalakis, Antonis</creatorcontrib><creatorcontrib>Nikiforidis, George C.</creatorcontrib><creatorcontrib>Sakellaropoulos, George C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Argyropoulos, Christos</au><au>Daskalakis, Antonis</au><au>Nikiforidis, George C.</au><au>Sakellaropoulos, George C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background adjustment of cDNA microarray images by Maximum Entropy distributions</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>43</volume><issue>4</issue><spage>496</spage><epage>509</epage><pages>496-509</pages><issn>1532-0464</issn><eissn>1532-0480</eissn><abstract>Many empirical studies have demonstrated the exquisite sensitivity of both traditional and novel statistical and machine intelligence algorithms to the method of background adjustment used to analyze microarray datasets. In this paper we develop a statistical framework that approaches background adjustment as a classic stochastic inverse problem, whose noise characteristics are given in terms of Maximum Entropy distributions. We derive analytic closed form approximations to the combined problem of estimating the magnitude of the background in microarray images and adjusting for its presence. The proposed method reduces standardized measures of log expression variability across replicates in situations of known differential and non-differential gene expression without increasing the bias. Additionally, it results in computationally efficient procedures for estimation and learning based on sufficient statistics and can filter out spot measures with intensities that are numerically close to the background level resulting in a noise reduction of about 7%.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20362072</pmid><doi>10.1016/j.jbi.2010.03.007</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-0464
ispartof Journal of biomedical informatics, 2010-08, Vol.43 (4), p.496-509
issn 1532-0464
1532-0480
language eng
recordid cdi_proquest_miscellaneous_787045683
source MEDLINE; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
cDNA
Entropy
Gene Expression
Image restoration
Image segmentation
Maximum Entropy
Microarray
Models, Statistical
Oligonucleotide Array Sequence Analysis - methods
title Background adjustment of cDNA microarray images by Maximum Entropy distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background%20adjustment%20of%20cDNA%20microarray%20images%20by%20Maximum%20Entropy%20distributions&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Argyropoulos,%20Christos&rft.date=2010-08-01&rft.volume=43&rft.issue=4&rft.spage=496&rft.epage=509&rft.pages=496-509&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2010.03.007&rft_dat=%3Cproquest_cross%3E733981574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733981574&rft_id=info:pmid/20362072&rft_els_id=S1532046410000407&rfr_iscdi=true