Background adjustment of cDNA microarray images by Maximum Entropy distributions
Many empirical studies have demonstrated the exquisite sensitivity of both traditional and novel statistical and machine intelligence algorithms to the method of background adjustment used to analyze microarray datasets. In this paper we develop a statistical framework that approaches background adj...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical informatics 2010-08, Vol.43 (4), p.496-509 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many empirical studies have demonstrated the exquisite sensitivity of both traditional and novel statistical and machine intelligence algorithms to the method of background adjustment used to analyze microarray datasets. In this paper we develop a statistical framework that approaches background adjustment as a classic stochastic inverse problem, whose noise characteristics are given in terms of Maximum Entropy distributions. We derive analytic closed form approximations to the combined problem of estimating the magnitude of the background in microarray images and adjusting for its presence.
The proposed method reduces standardized measures of log expression variability across replicates in situations of known differential and non-differential gene expression without increasing the bias. Additionally, it results in computationally efficient procedures for estimation and learning based on sufficient statistics and can filter out spot measures with intensities that are numerically close to the background level resulting in a noise reduction of about 7%. |
---|---|
ISSN: | 1532-0464 1532-0480 |
DOI: | 10.1016/j.jbi.2010.03.007 |