Advanced glycation end-products in the peritoneal fluid and in the peritoneal membrane of continuous ambulant peritoneal dialysis patients

In patients on continuous ambulant peritoneal dialysis (CAPD) treatment, the peritoneal membrane is continuously exposed to the high glucose concentration contained in the dialysate. This may lead to the local generation of advanced glycation end-products (AGEs). To test this hypothesis we evaluated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nephrology, dialysis, transplantation dialysis, transplantation, 1996, Vol.11 (supp5), p.2-6
Hauptverfasser: MAHIOUT, A, EHLERDING, G, BRUNKHORST, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In patients on continuous ambulant peritoneal dialysis (CAPD) treatment, the peritoneal membrane is continuously exposed to the high glucose concentration contained in the dialysate. This may lead to the local generation of advanced glycation end-products (AGEs). To test this hypothesis we evaluated the plasma and dialysate AGE concentrations in five CAPD patients. The dialysate was measured after a 1 h and after a 12 h dwell time. Additionally, in two patients an immunohistochemical investigation of the peritoneal membrane for AGE was performed. For the determination of AGE an ELISA using a polyclonal antibody against AGE bovine serum albumin was used; the immunohistochemical staining was performed using the streptavidin-biotin complex method. We found only low concentrations of AGE in the dialysate after a 1 h dwell time; after 12 h, however, the dialysate AGE was even greater than the plasma concentration. In both peritoneal specimens we found positive staining for AGE in the interstitium of the mesothelial layer. The dialysate AGE contained a high proportion of high-molecular-weight AGE proteins and low-molecular-weight AGE was found to be in the same concentration range as the total serum AGE. We conclude that there is local generation of AGE in the peritoneal membrane and a 'washing out' of AGE from the peritoneal membrane during longer dwell times. We speculate that the accumulation of AGE might lead to some of the functional and morphological alterations observed after long-term CAPD.
ISSN:0931-0509
1460-2385
DOI:10.1093/ndt/11.supp5.2