A dual role for endothelial cells in cytomegalovirus infection? A study of cytomegalovirus infection in a series of rat endothelial cell lines

Several clinical findings point to the involvement of microvascular endothelial cells in cytomegalovirus-related pathology. In this study the interactions of cytomegalovirus (CMV) with microvascular endothelial cells was investigated in an in vitro rat model. A series of rat endothelial cell lines,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virus research 1996-12, Vol.46 (1), p.65-74
Hauptverfasser: Vossen, Renée C.R.M., Derhaag, Josien G., Slobbe-van Drunen, Marlea E.P., Duijvestijn, Adrian M., van Dam-Mieras, Maria C.E., Bruggeman, Cathrien A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several clinical findings point to the involvement of microvascular endothelial cells in cytomegalovirus-related pathology. In this study the interactions of cytomegalovirus (CMV) with microvascular endothelial cells was investigated in an in vitro rat model. A series of rat endothelial cell lines, considered representative for the heterogeneity of heart microvascular endothelium in vivo, were infected with rat CMV (RCMV). The course of infection and production of infectious virus were examined using immunofluorescence staining and plaque titration assays, and was compared with infection of fully permissive rat fibroblasts. These endothelial cell lines diplayed differences in susceptibility to CMV infection. Two endothelial cell lines (RHEC 50 and 191) were practically non-permissive, while four endothelial cell lines (RHEC 3, 10, 11 and 116) were partly permissive for CMV infection. In contrast to CMV infection in fibroblasts, only limited infection of the permissive endothelial cell lines was observed without spreading of CMV infection through the monolayer, although infectious virus was produced. Detachment of infected endothelial cells and recovery of the monolayer with time was observed. The detached endothelial cells were able to transmit CMV infection to fibroblast monolayers, but not to endothelial monolayers. Our in vitro results demonstrate differences in permissiveness for RCMV between the series of rat endothelial cell lines, which is suggestive for endothelial heterogeneity to CMV infection in vivo. Our findings indicate that endothelial cells are relatively resistant to CMV infection and that, upon infection, the endothelial monolayer may dispose of the virus via detachment of the infected cells. This points to a dual role for the endothelium in CMV infection in vivo: a barrier for CMV infection (by the endothelial monolayer) on the one hand and spreading of CMV infection (by detached infected cells) on the other hand.
ISSN:0168-1702
1872-7492
DOI:10.1016/S0168-1702(96)01375-5