Differential Binding of HMG1, HMG2, and a Single HMG Box to Cisplatin-Damaged DNA
The HMG box domain is a DNA binding domain present in the nonhistone chromosomal proteins HMG1 and HMG2 and in other proteins involved in the regulation of gene expression. Previous studies have demonstrated that HMG1 and HMG2 bind with high affinity to DNA modified with the cancer chemotherapeutic...
Gespeichert in:
Veröffentlicht in: | Toxicology and applied pharmacology 1996-12, Vol.141 (2), p.532-539 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The HMG box domain is a DNA binding domain present in the nonhistone chromosomal proteins HMG1 and HMG2 and in other proteins involved in the regulation of gene expression. Previous studies have demonstrated that HMG1 and HMG2 bind with high affinity to DNA modified with the cancer chemotherapeutic drug cisplatin (CDDP). In this report, we compare the binding of full-length HMG1 and HMG2 and the HMG boxes present in these proteins to that of CDDP-DNA. Complexes between HMG1, HMG2, or HMG Box A + B and CDDP-DNA were stable at ≥500 mMsalt, while complexes between a single HMG box and CDDP-DNA exhibited decreased stability. Analysis of a series of HMG1 Box A mutant constructs revealed different affinities for CDDP-DNA. Two constructs containing a Phe to Ala substitution at position 19 and a Tyr to Gly substitution at position 71, are noteworthy; these peptides exhibited reduced affinity for CDDP-DNA. We have generated a structure of HMG1 Box A and used it, along with the results of our binding studies, to model its interaction with CDDP-DNA. HMG1 Box A binds in the minor groove of CDDP-DNA, in agreement with earlier studies. Our model predicts that Tyr71 partially intercalates and forms an H bond with the sugar–phosphate backbone. The model also suggests that Phe 19 does not directly interact with DNA, and hence an Ala substitution at position 19 may alter protein structure. This model should provide a framework for future studies examining HMG Box–DNA interactions. |
---|---|
ISSN: | 0041-008X 1096-0333 |
DOI: | 10.1006/taap.1996.0319 |