Molecular Studies on Bromovirus Capsid Protein: II. Functional Analysis of the Amino-Terminal Arginine-Rich Motif and Its Role in Encapsidation, Movement, and Pathology

The N-terminal region of the brome mosaic bromovirus (BMV) coat protein (CP) contains an arginine-rich motif that is conserved among plant and nonplant viruses and implicated in binding the RNA during encapsidation. To elucidate the functional significance of this conserved motif in the BMV CP, a se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virology (New York, N.Y.) N.Y.), 1996-12, Vol.226 (2), p.294-305
Hauptverfasser: Rao, A.L.N., Grantham, George L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The N-terminal region of the brome mosaic bromovirus (BMV) coat protein (CP) contains an arginine-rich motif that is conserved among plant and nonplant viruses and implicated in binding the RNA during encapsidation. To elucidate the functional significance of this conserved motif in the BMV CP, a series of deletions encompassing the arginine-rich motif was introduced into a biologically active clone of BMV RNA3, and their effect on replication, encapsidation, and infection in plants was examined. Analysis of infection phenotypes elicited onChenopodium quinoarevealed the importance of the first 19 N-proximal amino acids of BMV CP in encapsidation and pathogenicity. Inoculation ofC. quinoawith three viable variants of BMV RNA3 lacking the first 11, 14, and 18 N-terminal amino acids of the CP resulted in the development of necrotic local lesions and restricted the spread of infection to inoculated leaves. Progeny analysis from symptomatic leaves revealed that, in each case, virus accumulation was severely affected by the introduced mutations and each truncated CP differed in its ability to package genomic RNA. In contrast to these observations inC. quinoa,none of the CP variants was able to establish either local or systemic infections in barley plants. The intrinsic role played by the N-terminal arginine-rich motif of BMV CP in packaging viral RNAs and the interactions between the host and the truncated CPs in modulating symptom expression and movement are discussed.
ISSN:0042-6822
1096-0341
DOI:10.1006/viro.1996.0657