Reversible deactivation of cerebral network components
Reversible deactivation techniques have shown that the cerebral network: (1) is dynamic, its functions depending on contemporaneous processing elsewhere in the network; (2) is composed of single nodes that contribute to several behaviors; (3) possesses an inherent plasticity that tends to minimize l...
Gespeichert in:
Veröffentlicht in: | Trends in neurosciences (Regular ed.) 1996-12, Vol.19 (12), p.535-542 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reversible deactivation techniques have shown that the cerebral network: (1) is dynamic, its functions depending on contemporaneous processing elsewhere in the network; (2) is composed of single nodes that contribute to several behaviors; (3) possesses an inherent plasticity that tends to minimize lesion-induced deficits; and (4) comprises feedforward and lateral connections that contribute in different ways to network operations. The next major advances in understanding network operations will probably be made by applying a combination of behavioral, neuron-recording and deactivation techniques. The greatest near-term gains are likely to be made in understanding the contributions that feedback projections make to cerebral network function.
Trends Neurosci. (1996) 19, 535–542 |
---|---|
ISSN: | 0166-2236 1878-108X |
DOI: | 10.1016/S0166-2236(96)10061-8 |