Pulsatile operation of a centrifugal ventricular assist device with magnetic bearings

A prototype bench top model of a continuous flow ventricular assist device using an impeller suspended by magnetic bearings has been developed. Generation of a pulsatile pressure was studied using both a computer model and in vitro loop tests of the prototype. The motivation for developing a compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASAIO journal (1992) 1996-09, Vol.42 (5), p.M620-M624
Hauptverfasser: Bearnson, G B, Olsen, D B, Khanwilkar, P S, Long, J W, Allaire, P E, Maslen, E H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A prototype bench top model of a continuous flow ventricular assist device using an impeller suspended by magnetic bearings has been developed. Generation of a pulsatile pressure was studied using both a computer model and in vitro loop tests of the prototype. The motivation for developing a computer model for a blood pump in the natural circulation is two-fold. First, it allows simulation of the pump under a large variety of operating conditions. Second, it provides insight into what parameters of the system design are important for achieving a specific result. For example, in one case, an aortic pressure of 118/87 mmHg was generated by varying the speed from 2,000 to 2,600 rpm. The computer model was verified by coupling the centrifugal pump prototype to a mock circulatory system. The results of the model were verified by generating an aortic pressure of 113/78 mmHg while varying the speed from 2,000 to 2,600 rpm. These experiments have shown that it is possible to generate pulsatile pressure similar to that of native physiology using a centrifugal left ventricular assist device. Further tests will be required to quantify the effects on hemolysis.
ISSN:1058-2916
DOI:10.1097/00002480-199609000-00062