Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding

Risperidone and its active metabolite 9-OH-risperidone were compared to reference antipsychotic drugs (haloperidol, pipamperone, fluspirilene, clozapine, zotepine) and compounds under development (olanzapine, seroquel, sertindole, ORG-5222, ziprasidone) for in vitro binding to neurotransmitter recep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychopharmacology 1996-03, Vol.124 (1-2), p.57-73
Hauptverfasser: Schotte, A, Janssen, P F, Gommeren, W, Luyten, W H, Van Gompel, P, Lesage, A S, De Loore, K, Leysen, J E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Risperidone and its active metabolite 9-OH-risperidone were compared to reference antipsychotic drugs (haloperidol, pipamperone, fluspirilene, clozapine, zotepine) and compounds under development (olanzapine, seroquel, sertindole, ORG-5222, ziprasidone) for in vitro binding to neurotransmitter receptors in brain tissue and on membranes of recombinant cells expressing cloned human receptors and for in vivo occupancy of neurotransmitter receptors in rat and guinea-pig brain following acute treatment (2 h., s.c.). An ex vivo autoradiography technique was applied to determine the receptor occupancy by the drugs administered in vivo. Of particular interest are the central 5HT2A receptors and D2-type receptors. Predominant 5HT2A receptor antagonism is supposed to add to an atypical profile of the antipsychotics (treatment of the negative symptoms, low incidence of extrapyramidal side effects). D2 antagonism is required the treatment of positive symptoms. A contribution of the new dopamine receptor subtypes D3 and in particular D4 receptors has been proposed. In vitro, all compounds, except the 'typical' antipsychotics haloperidol and fluspirilene, showed higher affinity for 5HT2A than for D2 receptors. Subnanomolar affinity for human 5HT2A receptors was observed for ORG-5222, sertindole, risperidone, 9-OH-risperidone and ziprasidone. Fluspirilene, ORG-5222, haloperidol, ziprasidone, risperidone, 9-OH-risperidone and zotepine displayed nanomolar affinity for human D2 receptors. Sertindole and olanzapine were slightly less potent. Pipamperone, clozapine and seroquel showed 2 orders of magnitude lower D2 affinity in vitro. Clozapine, but even more so pipamperone, displayed higher affinity for D4 than for D2 receptors. For most other compounds, D4 affinity was only slightly lower than their D2 affinity. Seroquel was totally devoid of D4 affinity. None of the compounds had nanomolar affinity for D1 receptors; their affinity for D3 receptors was usually slightly lower than for D2 receptors. In vivo, ORG-5222, risperidone, pipamperone, 9-OH-risperidone, sertindole, olanzapine, zotepine and clozapine maintained a higher potency for occupying 5HT2A than D2 receptors. Risperidone and ORG-5222 had 5HT2A versus D2 potency ratio of about 20. Highest potency for 5HT2A receptor occupancy was observed for ORG-5222 followed by risperidone and olanzapine. Ziprasidone exclusively occupied 5HT2A receptors. ORG-5222, haloperidol, fluspirilene and olanzapine showed the highest potenc
ISSN:0033-3158
1432-2072
DOI:10.1007/BF02245606