Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha

Recent studies indicate that a peroxisome proliferator-activated receptor, PPAR gamma, functions as an important adipocyte determination factor. In contrast, tumor necrosis factor-alpha (TNF alpha) inhibits adipogenesis, causes dedifferentiation of mature adipocytes, and reduces the expression of se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular endocrinology (Baltimore, Md.) Md.), 1996-11, Vol.10 (11), p.1457-1466
Hauptverfasser: Zhang, B, Berger, J, Hu, E, Szalkowski, D, White-Carrington, S, Spiegelman, B M, Moller, D E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies indicate that a peroxisome proliferator-activated receptor, PPAR gamma, functions as an important adipocyte determination factor. In contrast, tumor necrosis factor-alpha (TNF alpha) inhibits adipogenesis, causes dedifferentiation of mature adipocytes, and reduces the expression of several adipocyte-specific genes. Here, we report that treatment of 3T3-L1 adipocytes with TNF alpha resulted in a time- and concentration-dependent decrease in PPAR gamma mRNA expression to the level detected in preadipocytes. PPAR gamma mRNA levels were reduced by 95% with 3 nM TNF alpha treatment for 24 h. Half-maximal effects were seen after 3 h treatment with 3 nM TNF alpha or with 50 pM TNF alpha (24-h exposure). Parallel reductions in PPAR gamma protein levels were also observed after treatment of 3T3-L1 adipocytes with TNF alpha. Using a ribonuclease protection assay, both alternatively spliced PPAR gamma isoforms (gamma 1 and gamma 2) were shown to be negatively regulated by TNF alpha. The down-regulation of PPAR gamma by TNF-alpha preceded the diminution in expression of other adipocyte-specific genes including CCAAT/enhancer binding protein and adipocyte fatty acid-binding protein (aP2). The effect of TNF alpha was specific for the gamma-isoform of PPARs, since the expression of PPAR delta mRNA was not affected by treatment with TNF alpha. Low level constitutive expression of PPAR gamma in 3T3-L1 adipocytes (at levels approximately 2- to 3-fold higher than in preadipocytes) partially blocked the inhibitory effect of TNF alpha on aP2 and adipsin expression. These findings support the following conclusions: 1) PPAR gamma expression is necessary for the maintenance of the adipocyte phenotype. 2) PPAR gamma, but not PPAR delta, expression is sufficient to attenuate TNF alpha-mediated effects on adipocyte phenotype. 3) Reduced PPAR gamma gene expression is likely to represent an important component of the mechanism by which TNF alpha exerts its antiadipogenic effects.
ISSN:0888-8809
DOI:10.1210/me.10.11.1457