Parameter and environmental influences on rigid contact lens wettability

The present investigation was designed to determine the effect of lens parameters and lens environment on measurements of contact angle. The sessile drop contact angle of saline on four rigid [polymethyl methacrylate (PMMA) and silicone/acrylate] contact lens materials was examined with a Ramé-Hart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of optometry and physiological optics 1988-09, Vol.65 (9), p.717-721
Hauptverfasser: HUFF, J. W, EGAN, D. J, KATICH, M. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present investigation was designed to determine the effect of lens parameters and lens environment on measurements of contact angle. The sessile drop contact angle of saline on four rigid [polymethyl methacrylate (PMMA) and silicone/acrylate] contact lens materials was examined with a Ramé-Hart goniometer to determine how front surface radius, drop size, time after drop placement, humidity, and desiccation affect measurements of lens wettability in vitro. Contact angles of Silafocon A and PMMA were relatively uninfluenced by front surface radii between 7.7 and 8.85 and 7.3 to 8.8 mm, respectively. Contact angles of Pasifocon C and modified PMMA were slightly but significantly influenced by front surface radii between 6.4 and 7.5 mm. For drop volumes from 2 to 20 microliter, all materials yielded contact angles, which were unaffected by drop size. The contact angle of lenses stored in the hydrated or dehydrated state was not affected by chamber humidity between 31 and 76%. In the ranges tested, drop size, humidity, and hydration had no significant effect on the contact angle within 1 to 6 min after drop placement. In addition, surface scratches had no effect on lens wettability. The results suggest that goniometry on contact lens surfaces, for the most part, is uninfluenced by lens parameters and environmental conditions.
ISSN:0093-7002
2330-9512