Bone growth and remodelling after fracture
We used a rabbit model to investigate the mechanism by which the angulation of fractures is corrected in children. We produced a transverse proximal tibial fracture in one leg of 12 eight-week-old New Zealand white rabbits and measured bone alignment and length and the patterns of bone growth and re...
Gespeichert in:
Veröffentlicht in: | Journal of bone and joint surgery. British volume 1996, Vol.78 (1), p.42-50 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We used a rabbit model to investigate the mechanism by which the angulation of fractures is corrected in children. We produced a transverse proximal tibial fracture in one leg of 12 eight-week-old New Zealand white rabbits and measured bone alignment and length and the patterns of bone growth and remodelling. The angle between the joint surfaces changed rapidly to correct the alignment of the limb as a result of asymmetrical growth of epiphyseal plates. In an adult with closed plates, the angle between the joint surfaces cannot therefore improve. The angle at the fracture itself showed slow improvement because of bone drift and the asymmetrical growth of the epiphyseal plates. Remodelling corrected the shape of the bone in the region of the fracture. Periosteal division on the convex side increased the growth of the epiphyseal plate on that side, thus slowing the correction. The effect was relatively small, providing an indication that factors other than the periosteum are important in inducing correction. External torsional deformities developed because of helical growth at the plate. This was probably caused by abnormal posture which induced a torque at the growth plate. Helical growth is the mechanism by which rotational deformities can occur and correct. |
---|---|
ISSN: | 0301-620X 2049-4394 2044-5377 2049-4408 |
DOI: | 10.1302/0301-620x.78b1.0780042 |