Finite element modeling of the C4–C6 cervical spine unit

This study was conducted to develop a detailed, three-dimensional, anatomically accurate finite element model of the human cervical spine structure using close-up computed tomography scans and to validate against experimental data. The finite element model of the three vertebra segment CA-06 unit co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 1996-10, Vol.18 (7), p.569-574
Hauptverfasser: Yoganandan, N., Kumaresan, S.C., Voo, Liming, Pintar, F.A., Larson, S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study was conducted to develop a detailed, three-dimensional, anatomically accurate finite element model of the human cervical spine structure using close-up computed tomography scans and to validate against experimental data. The finite element model of the three vertebra segment CA-06 unit consisted of 9178 solid elements and 1193 thin shell elements. The force-displacement response under axial compression correlated well with experimental data. Because of the inclusion of three levels in the spinal structure, it was possible to determine the internal mechanics of the various components at each level. The applicability of the model was illustrated by adopting appropriate material properties from literature. Results indicated that, the stresses in the anterior column were higher compared to the posterior column at the inferior level, while the opposite was found to be true at the superior level. The superior and inferior endplate stresses were higher in the middle vertebral body compared to the adjacent vertebrae. In addition, the stresses in the cancellous core of the middle, unconstrained vertebral body were higher. The present three-dimensional finite element model offers an additional facet to a better understanding of the biomechanics of the human cervical spine.
ISSN:1350-4533
1873-4030
DOI:10.1016/1350-4533(96)00013-6