High-energy (511-keV) imaging with the scintillation camera

A dual-head scintillation camera has been adapted for high-energy (511-keV) imaging by extending the useful energy range and linearity maps to 560 keV, implementing high-energy sensitivity maps, and developing high-energy collimators. High-energy parallel-hole collimators have inferior spatial resol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiographics 1996-09, Vol.16 (5), p.1183-1194
Hauptverfasser: Patton, J A, Sandler, M P, Ohana, I, Weinfeld, Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dual-head scintillation camera has been adapted for high-energy (511-keV) imaging by extending the useful energy range and linearity maps to 560 keV, implementing high-energy sensitivity maps, and developing high-energy collimators. High-energy parallel-hole collimators have inferior spatial resolution and sensitivity relative to the low-energy, high-resolution collimators commonly in use. With high-energy parallel-hole collimators, phantom studies show that the limit for detectability of "hot" lesions is 1.5 cm and 1.3 cm in diameter or larger for 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) uptake ratios of 5:1 and 10:1, respectively, if one assumes adequate counting statistics. Dual-isotope, single-acquisition techniques for using technetium-99m methoxy isobutyl isonitrile and FDG have been developed and proved useful in identification of ischemic but viable myocardium. High-energy fan-beam collimators have superior spatial resolution but inferior sensitivity relative to low-energy, high-resolution collimators. Metabolic images of the brain obtained with FDG demonstrate spatial resolution comparable with that of positron emission tomography, but such studies are often limited by inadequate counting statistics.
ISSN:0271-5333
1527-1323
DOI:10.1148/radiographics.16.5.8888397