Cocaine-induced biochemical changes and cytotoxicity in hepatocytes isolated from both mice and rats

The mechanism of cocaine-induced cytotoxicity was investigated in hepatocytes isolated from both male C3H mice and male Sprague-Dawley rats. Cocaine was more cytotoxic to mouse hepatocytes than rat and induced reduced glutathione (GSH) depletion prior to marked increases in cytotoxicity in both syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemico-biological interactions 1988, Vol.67 (1), p.95-104
Hauptverfasser: Donnelly, D.A., Boyer, C.S., Petersen, D.R., Ross, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism of cocaine-induced cytotoxicity was investigated in hepatocytes isolated from both male C3H mice and male Sprague-Dawley rats. Cocaine was more cytotoxic to mouse hepatocytes than rat and induced reduced glutathione (GSH) depletion prior to marked increases in cytotoxicity in both systems. In both mouse and rat cells, GSH depletion was accompanied by GSSG production, but in rat cells, quantitative measures suggested that other mechanisms contributed to GSH depletion. No cocaine-induced depletion of protein-thiol groups or generation of protein-glutathione mixed disulfides could be detected in rat cells. Cocaine induced lipid peroxidation, using malondialdehyde (MDA) production as an index of the peroxidation process, in both mouse and rat hepatocytes. Inhibition of MDA production to below control levels using the antioxidant N,N′-diphenylphenylene diamine (DPPD) however, had no inhibitory effect on cocaine-induced cytotoxicity in either mouse or rat cells. These data suggest that neither generalized protein thiol depletion nor lipid peroxidation are critical determinants of cocaine-induced cytotoxicity in cellular systems.
ISSN:0009-2797
1872-7786
DOI:10.1016/0009-2797(88)90089-0